Aims: To develop and evaluate a TaqMan‐based internal amplification control (IAC) that can be used as DNA in real‐time PCR (qPCR) or as RNA in reverse transcription real‐time PCR (qRT‐PCR) to identify the presence of assay inhibition and to evaluate its incorporation into existing qPCR and qRT‐PCR methods for bacterial detection. Methods and Results: A DNA IAC was constructed by generating a 198‐bp random sequence that was synthesized and inserted into a pZErO‐2 vector and transformed into Escherichia coli. The RNA IAC was generated through in vitro transcription of the DNA IAC. Both IAC formats were tested individually in singleplex TaqMan reactions and also included in existing multiplex assays. The DNA IAC was incorporated in a Shigella spp. detection qPCR assay (targeting ipaH). The RNA IAC was successfully evaluated in a Salmonella spp. detection qRT‐PCR (using invA mRNA as target). Conclusions: A highly versatile IAC that can be supplemented to qPCR and qRT‐PCR pathogen detection methods was developed, greatly reducing the confounding effects of false negatives because of PCR inhibitors without affecting pathogen detection. Significance and Impact of the Study: The frequency of false negatives associated with qPCR analyses is prevalent in certain matrices, particularly those involving complex foods. Hence, the IAC presented here provides a solution to unforeseen false‐negative reactions in PCR.
Enterobacter sakazakii causes a severe form of neonatal meningitis that occurs as sporadic cases as well as outbreaks. The disease has been epidemiologically associated with consumption of reconstituted, dried infant formulas. Very little information is available regarding pathogenicity of the organism and production of virulence factors. Clinical and environmental strains were screened for production of factors which have activity against Chinese hamster ovary (CHO) cells in tissue culture. Polymyxin B lysate and sonicate preparations but not culture supernatants from the strains caused "rounding" of CHO cells. Subsequent studies showed that the CHO cell-rounding factor is a proteolytic enzyme that has activity against azocasein. The cell-bound protease was isolated by using a combination of polymyxin B lysis, followed by sonication of cells harvested from tryptone broth. The protease was purified to homogeneity by sequential ammonium sulfate precipitation, gel filtration chromatography with Sephadex G-100, hydrophobic interaction chromatography with phenyl-Sepharose CL-4B, and a second gel filtration with Sephadex G-100. In addition to activity against azocasein, the purified protease also exhibits activity against azocoll and insoluble casein but not elastin. The protease has a molecular weight of 38,000 and an isoelectric point of 4.4. It is heat labile and for maximal activity against azocasein has an optimum temperature of 37°C and a pH range of 5 to 7. Proteolytic activity is inhibited by ortho-phenanthroline and Zincov but is not affected by phenylmethylsulfonyl fluoride, N-ethylmaleimide, and trypsin inhibitors, which demonstrates that the protease is a zinc-containing metalloprotease. The metalloprotease does not hemagglutinate chicken or sheep erythrocytes. Twenty-three to 27 of the first 42 N-terminal amino acid residues of the metalloprotease are identical to proteases produced by Serratia proteamaculans, Pectobacterium carotovorum, and Anabaena sp. PCR analysis using primers designed from a consensus nucleotide sequence showed that 135 E. sakazakii strains possessed the metalloprotease gene, zpx, and 25 non-E. sakazakii strains did not. The cloned zpx gene of strain 29544 consists of 1,026 nucleotides, and the deduced amino acid sequence of the metalloprotease has 341 amino acid residues, which corresponds to a theoretical protein size of 37,782 with a theoretical pI of 5.23. The sequence possesses three well-characterized zinc-binding and active-site motifs present in other bacterial zinc metalloproteases.
Shigella species, particularly S. sonnei and S. flexneri, remain some of the leading bacterial etiological agents of gastrointestinal diseases in the United States and globally. The isolation and detection of these foodborne pathogens are critical for preventing the spread of disease and facilitating epidemiological investigations aimed at determining the source of a Shigella infection outbreak. A multiplex real-time PCR-based assay was developed that targets all four species of Shigella plus enteroinvasive Escherichia coli. The assay incorporates primers directed to the ipaH genes located on both the virulence plasmid and chromosome, the plasmid-encoded virulence gene mxiC, a mutated mxiC gene (mxiC::kan) that differentiates wild-type strains from a laboratory control strain, and an internal amplification control. More than 50 isolates of all four Shigella species were tested for inclusivity and specificity of the multiplex PCR assay, and more than 30 non-Shigella isolates were tested for exclusivity of the assay. The sensitivity of the assay was 1 to 3 CFU and 5 to 50 fg of target (total) DNA for the ipaH, mxiC, and mxiC::kan gene targets. The assay performed equally well and with no measurable inhibition in the Shigella target reactions when rinsates of several high-risk produce commodities (parsley, cilantro, alfalfa sprouts, and lettuce) were added to the reactions. This multiplex PCR assay is sensitive and specific and has the added dimension of discriminating all Shigella species from the positive control strain so that in any sample analysis other strains can be excluded as a source of contamination.
a b s t r a c tFaster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 Â 10 3 Shigella CFU/ml post-enrichment, requiring w18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.