Highlights d Multi-omics analysis and techniques with NASA's GeneLab platform d The largest cohort of astronaut data to date utilized for analysis d Mitochondrial dysregulation driving spaceflight health risks d NASA Twin Study data validates mitochondrial dysfunction during space missions
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we determined a circulating miRNA, miR-2392, is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of patients positive for COVID-19, but not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using
in vitro
human and
in vivo
hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.