Background The fronds of Drynaria quercifolia have traditionally been used in rheumatic pain management. The goal of the present study was to validate the potent anti-inflammatory and anti-rheumatoid properties of the methanolic-extract of its rhizome using in vitro, in vivo and in silico strategies. Methods The plant was collected and the methanolic extract was prepared from its rhizome. Protein denaturation test, hypotonicity and heat-induced haemolysis assays were performed in vitro. The in vivo anti-rheumatoid potential was assessed in Freund’s complete adjuvant (FCA)-induced Wistar rat model through inflammatory paw-edema, haematological, biochemical, radiological and histopathological measurements. Moreover, metabolites of methanolic extract were screened by gas chromatography-mass spectrometry (GC-MS) and 3D molecular structures of active components were utilized for in silico docking study using AutoDock. Results In vitro results evinced a significant (p < 0.05) anti-inflammatory activity of the rhizome methanolic extract in a dose-linear response. Further, Drynaria quercifolia rhizome methanolic extract (DME) significantly ameliorated rheumatoid arthritis as indicated by the inhibition of arthritic paw-edema (in millimeter) in the rat rheumatoid arthritis models in both the low (57.71 ± 0.99, p < 0.01) and high dose groups (54.45 ± 1.30, p < 0.001) when compared to arthritic control. Treatment with DME also normalized the haematological (RBC, WBC, platelet counts and hemoglobin contents) and biochemical parameters (total protein, albumin, creatinine and ceruloplasmin) significantly (p < 0.05), which were further supported by histopathological and radiological analyses. Furthermore, GC-MS analysis of DME demonstrated the presence of 47 phytochemical compounds. Compounds like Squalene, Gamma Tocopherol, n-Hexadecanoic acid showed potent inhibition of cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. Conclusion Results from in vivo and in vitro studies indicated that DME possesses a potent anti-inflammatory and anti-arthritic activity. In silico studies delineated the emergent potent inhibitory effects of several bio-active components on the target inflammatory markers (COX-2, TNF-α and IL-6).
Background Aloe vera leaf gel has proven efficacious roles in the amelioration of several human diseases and illness-conditions. Specific purified gel-derived bio-constituents as well as the naturally harvested unprocessed A. vera gel have shown promise in modifying systemic inflammation. However, the synergistic role of natural herbal remedies, a mainstay of traditional Indian Ayurveda, has not been evaluated rigorously in this plant. In this study, the prevention of membrane lysis and protein denaturation in the presence of A. vera gel homogenate up to the concentration of 1000 μg/ml of gel has been assessed in vitro. Also, regulation of expression of inflammation-mediator genes (TNF-α and Cox-2) has been investigated in vivo in Freund’s complete adjuvant (FCA)-induced inflammatory arthritic Wistar albino rats in a 28-day long study following the daily oral supplementation of Aloe vera gel homogenate doses up to 0.40 and 0.80 g/kg body weight (low-dose and high-dose groups respectively). Results Our results indicated that A. vera gel homogenate inhibits hypotonicity-induced (74.89 ± 1.26%) and heat-induced (20.86 ± 0.77%) RBC membrane lyses respectively at a concentration of 1000 μg/ml, compared to indomethacin standard (80.52 ± 0.65% and 43.98 ± 1.52% respectively at 200 μg/ml concentration). The similar concentration of gel also showed 39.35 ± 4.25% inhibition of protein denaturation compared to standard diclofenac sodium (46.74 ± 1.84% at 100 μg/ml concentration) in vitro. When assessed in vivo, TNF-α expression was found to be decreased by 35.88% and 38.52%, and Cox-2 expression was found to be decreased by 31.65% and 34.96%, in low-dose and high-dose groups respectively, when compared to the arthritic controls. Conclusions Our findings justify the role of unprocessed A. vera gel homogenate in preventing tissue damage and in the downregulation of TNF-α and Cox-2 gene expressions for the immune-modulation of inflammatory arthritis condition.
Background There is always an increasing demand for natural remedies from natural sources which can substitute the synthetic therapeutic drugs and lessen their side effects. The present study aims to investigate the antioxidant, anti-inflammatory, antimicrobial properties and in silico docking study of Citrus macroptera leaf (CML) extract in both in vivo and in vitro aspect. Material and methods The antioxidant and anti-inflammatory potential of crude extract was investigated in vitro and in vivo on Wistar albino rat. The antioxidant potentiality also investigated on HepG2 cell line. Antimicrobial activity was evaluated against Staphylococcus sp. and Klebsiella sp. Chemical compounds of the crude extract were identified by GC-MS analysis. In silico docking was also done against NF-ҡB protein. Results At 200 μg/ml concentration, CML significantly scavenges reactive oxygen species (ROS) which was generated on HepG2 cell line. CML showed 71% anti-inflammatory activity (p ≤ 0.001) against carrageenan-induced paw edema in albino Wistar rats. CML extract is very effective against staphylococcus sp. than Klebsiella sp. In the docking analysis, the proximadiol and menthone had − 5.6 kcal/mol and − 5.7 kcal/mol binding affinity with the protein NF-ҡB. Conclusion In the present work, CML provided notable antioxidant, anti-inflammatory, and antimicrobial activity. This activity was confirmed by both in vitro and in vivo followed by in silico docking technique. Overall, the experimental results presented in this study suggest that crude extract of CML could be used as a promising antioxidant and anti-inflammatory candidate with potential benefits.
In this study, the two lactic acid bacterial strains Enterococcus durans and Enterococcus lactis previously isolated from soft chhurpi, a traditionally fermented milk product prepared by the indigenous community of Sikkim Himalayas and healthy human gut were used. In this study, we attempted to investigate the probiotic attributes, safety, and health beneficial role, and hypercholesterolemia of Enterococcus durans and Enterococcus lactis. Both probiotic potential strains showed good hypocholesterolemic activity in vitro along with tolerance to acid pH (2 and 2.5), tolerance to three bile salts, oxbile, cholic acid, and taurocholic acid (0.5 and 1%), presence of BSH enzyme and its activity, and cell surface adherence. On assessing for safety, both LAB strains were sensitive to antibiotics and exhibited no hemolytic activity. The probiotic strains were tested in vivo in the Sprague–Dawley rats which were divided into five experimental groups: Normal Control (ND), probiotic strain Enterococcus durans HS03 (BSH-negative) and high-cholesterol diet (HCD1), probiotic strain Enterococcus lactis YY1 (BSH-positive) and high-cholesterol diet (HCD2), and a combination of both strains and high-cholesterol diet (HCD3) and Negative Control (HCD). The probiotic-treated groups HCD1, HCD2, and HCD3 showed a decrease in serum cholesterol levels up to 22.55, 6.67, and 31.06%; the TG and VLDL concentrations were 25.39, 26.3, and 33.21%; reduction in LDL-cholesterol was 33.66, 28.50, and 35.87%; and increase of HDL was 38.32, 47.9, and 41.92%. Similarly, the effects of total cholesterol and TG in the liver, kidney and liver histopathology, liver and body lipid index, and oxidative stress in rat liver were also studied. The fecal lactobacilli were more in the samples of the probiotic-treated groups and their fecal coliform and E. coli counts decreased relatively as compared to the control groups in 0, 7, 14, and 21 days. This is the first report on the probiotic potential of Enterococcus durans HS03 and Enterococcus lactis YY1 strains that gives a new insight into the cholesterol-lowering and probiotic product development with wide health attributes.
Herein, inclusion complexation of host β-CD with guests, viz. nicotinamide and pyridoxine (two active forms of vitamins), in both aqueous medium and solid state has been explored by means of various spectroscopic and physicochemical procedures. In vivo toxicity and in vitro anti-inflammatory properties in experimental rat models through membrane stabilization and protein denaturation test are studied here. These imperative complexes, when orally consumed, showed no toxic effect in experimental rats equal to the dose (400 mg/kg) of body weight when fed up to 28 days. Binding constants for the inclusion complexes have been designed by the Stern–Volmer approximation method and found to be higher for pyridoxine, elucidated on account of their molecular structural representation. Additionally, molecular docking aided to enlighten the most possible mode of interactions among guests and β-CD. Both of the encapsulated systems could potentially find applications in vitamin B3 and vitamin B6 formulation for the purpose of enhancing stability, absorption, and controlled delivery of these imperative vitamins. The use of β-CD as a drug delivery vehicle with vitamin B substituents into eukaryotic cells is well documented and thus increases the bioavailability of diverse therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.