Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.
Background Aloe vera leaf gel has proven efficacious roles in the amelioration of several human diseases and illness-conditions. Specific purified gel-derived bio-constituents as well as the naturally harvested unprocessed A. vera gel have shown promise in modifying systemic inflammation. However, the synergistic role of natural herbal remedies, a mainstay of traditional Indian Ayurveda, has not been evaluated rigorously in this plant. In this study, the prevention of membrane lysis and protein denaturation in the presence of A. vera gel homogenate up to the concentration of 1000 μg/ml of gel has been assessed in vitro. Also, regulation of expression of inflammation-mediator genes (TNF-α and Cox-2) has been investigated in vivo in Freund’s complete adjuvant (FCA)-induced inflammatory arthritic Wistar albino rats in a 28-day long study following the daily oral supplementation of Aloe vera gel homogenate doses up to 0.40 and 0.80 g/kg body weight (low-dose and high-dose groups respectively). Results Our results indicated that A. vera gel homogenate inhibits hypotonicity-induced (74.89 ± 1.26%) and heat-induced (20.86 ± 0.77%) RBC membrane lyses respectively at a concentration of 1000 μg/ml, compared to indomethacin standard (80.52 ± 0.65% and 43.98 ± 1.52% respectively at 200 μg/ml concentration). The similar concentration of gel also showed 39.35 ± 4.25% inhibition of protein denaturation compared to standard diclofenac sodium (46.74 ± 1.84% at 100 μg/ml concentration) in vitro. When assessed in vivo, TNF-α expression was found to be decreased by 35.88% and 38.52%, and Cox-2 expression was found to be decreased by 31.65% and 34.96%, in low-dose and high-dose groups respectively, when compared to the arthritic controls. Conclusions Our findings justify the role of unprocessed A. vera gel homogenate in preventing tissue damage and in the downregulation of TNF-α and Cox-2 gene expressions for the immune-modulation of inflammatory arthritis condition.
The mean viral DNA load in urine samples of the studied immunocompetent population was found to be higher than that found in a study conducted in the USA, but lower than similar groups of Italy and healthy adult women in the USA. However when compared with median values of viral DNA loads in urine samples of immunocompetent human subjects of Kuwait, Portugal, and Switzerland the observed viral DNA load was found to be substantially higher.
There is a resurgence of interest in the study of occurrence, genotype and pathogenic associations of human Polyomaviruses in recent years. In the present study, we have ascertained the presence of human Polyomavirus JC (JCV) in the urine and peripheral blood leukocytes of tribal populations, for the first time in the North-Eastern part of West Bengal State of India. We have also characterized the prevalent genotypes of the non-coding controlregions (NCCRs) of these natural isolates. The result suggests a high incidence of JCV reactivation in the populations assayed. Approximately 25% of the non-immunocompromized tribal men and women, tested positive based on polymerase chain reaction (PCR) analysis, and these results were further confirmed by sequencing of PCR products. Pairwise sequence comparison and alignment of the NCCR sequence of these Indian strains appeared to be comparable and related to the archetypal JCV (CY) and the Tibetan LH3 strains, with some alterations in few key positions. The sequence analyses were done with regard to transcription factor binding to DNA sequence elements of endemic JCV NCCRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.