We propose a new model independent technique for constructing background data templates for use in searches for new physics processes at the LHC. This method, called Curtains, uses invertible neural networks to parameterise the distribution of side band data as a function of the resonant observable. The network learns a transformation to map any data point from its value of the resonant observable to another chosen value. Using Curtains, a template for the background data in the signal window is constructed by mapping the data from the side-bands into the signal region. We perform anomaly detection using the Curtains background template to enhance the sensitivity to new physics in a bump hunt. We demonstrate its performance in a sliding window search across a wide range of mass values. Using the LHC Olympics dataset, we demonstrate that Curtains matches the performance of other leading approaches which aim to improve the sensitivity of bump hunts, can be trained on a much smaller range of the invariant mass, and is fully data driven.
In this paper, we present a new method to efficiently generate jets in High Energy Physics called PC-JeDi. This method utilises score-based diffusion models in conjunction with transformers which are well suited to the task of generating jets as particle clouds due to their permutation equivariance. PC-JeDi achieves competitive performance with current stateof-the-art methods across several metrics that evaluate the quality of the generated jets. Although slower than other models, due to the large number of forward passes required by diffusion models, it is still substantially faster than traditional detailed simulation. Furthermore, PC-JeDi uses conditional generation to produce jets with a desired mass and transverse momentum for two different particles, top quarks and gluons.
A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $$ \sqrt{s} $$
s
= 13 TeV were analysed, corresponding to an integrated luminosity of 14.6 fb−1. A total of 441 candidate events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150–1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04–0.09 TeV−1 at 95% confidence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.