High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent missense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine (Py) tract splice site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RRM hydrogen bond, in agreement with an increased apparent RNA binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the wild-type residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, wild-type U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.
Edited by Karin Musier-ForsythThe transcription elongation and pre-mRNA splicing factor Tat-SF1 associates with the U2 small nuclear ribonucleoprotein (snRNP) of the spliceosome. However, the direct binding partner and underlying interactions mediating the Tat-SF1-U2 snRNP association remain unknown. Here, we identified SF3b1 as a Tat-SF1-interacting subunit of the U2 snRNP. Our 1.1 Å resolution crystal structure revealed that Tat-SF1 contains a U2AF homology motif (UHM) protein-protein interaction module. We demonstrated that Tat-SF1 preferentially and directly binds the SF3b1 subunit compared with other U2AF ligand motif (ULM)-containing splicing factors, and further established that SF3b1 association depends on the integrity of the Tat-SF1 UHM. We next compared the Tat-SF1-binding affinities for each of the five known SF3b1 ULMs and then determined the structures of representative high-and low-affinity SF3b1 ULM complexes with the Tat-SF1 UHM at 1.9 Å and 2.1 Å resolutions, respectively. These structures revealed a canonical UHM-ULM interface, comprising a Tat-SF1 binding pocket for a ULM tryptophan (SF3b1 Trp 338 ) and electrostatic interactions with a basic ULM tail. Importantly, we found that SF3b1 regulates Tat-SF1 levels and that these two factors influence expression of overlapping representative transcripts, consistent with a functional partnership of Tat-SF1 and SF3b1. Altogether, these results define a new molecular interface of the Tat-SF1-U2 snRNP complex for gene regulation.Tat stimulatory factor 1 (Tat-SF1) 4 was originally identified as a host cofactor that activates Tat-directed HIV-1 transcrip-tion (1, 2). Subsequent studies revealed that Tat-SF1 normally stimulates human transcription elongation (3, 4) as a complex with P-TEFb, SPT5, and RAP30 (2, 5-7). The Saccharomyces cerevisiae Tat-SF1 homologue, CUS2, promotes transcription elongation in combination with the RNA unwindases PRP5 and PRP11 (8). Beyond transcription, CUS2 is well-established as an assembly factor for the U2 small nuclear (sn)RNA in the early stages of pre-mRNA splicing (9 -13). Like CUS2, human Tat-SF1 influences pre-mRNA splicing (14 -18). Reduced Tat-SF1 levels typically promote intron retention rather than exon-skipping or alternative splice sites. Most recently, critical Tat-SF1 functions in pre-mRNA splicing have emerged for embryonic stem cell differentiation (17,18).Tat-SF1 co-immunoprecipitates with the U2 small nuclear ribonucleoprotein particle (17)(18)(19)(20), which anneals with the pre-mRNA branch point site in the early steps of spliceosome assembly. Yet, the direct interaction partner(s) of Tat-SF1 in the human spliceosome remains unknown. Clues arise from experimental observations coupled with the primary sequences of Tat-SF1 and the U2 snRNP components. Primary sequence analysis suggests that Tat-SF1 contains two modular domains, an RNA recognition motif (RRM) and a U2AF homology motif (UHM) (Fig. 1A). The UHM is a protein-interaction module with specialized features for recognizing short "U2AF ligand motifs...
The pre-mRNA splicing factor SF3b1 exhibits recurrent mutations among hematologic malignancies and cancers, and consequently is a major therapeutic target of clinically-advanced spliceosome inhibitors. In this review, we highlight and rigorously analyze emerging views of SF3b1 conformational transitions, including the human SF3b particle either in isolation or bound to spliceosome inhibitors, and human or yeast spliceosome assemblies. Among spliceosome states characterized to date, an SF3b1 α-helical superhelix significantly closes to surround a U2 small nuclear RNA duplex with the pre-mRNA branch point sequence. The SF3b1 torus is locally unwound at an active site adenosine, whereas protein cofactors appear to stabilize overall closure in the spliceosome. Network analyses demonstrates that the natural SF3b1 dynamics mimic its conformational change in the spliceosome, raising the possibility of conformational selection underpinning spliceosome assembly. These dynamic SF3b1 conformations have consequences for gatekeeping of spliceosome assembly and therapeutic targeting of its cancer-associated dysfunction.
The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.