Bioactive nanomaterials, namely, gallium oxyhydroxide GaO(OH), also surface-conjugated GaO(OH) with a giant sugar molecule β-cyclodextrin (CD), have been prepared through a simple wet chemical route such that the same could be suitably used in biomedical diagnostics as well as therapeutic applications. Several physical methods were used for their characterization: powder X-ray diffraction pattern of GaO(OH) NPs for their grain size determination, optical spectroscopic absorption (UV-vis and FT-IR), and fluorescence properties of these NPs to ascertain surface conjugation and also their wide band-gap properties. Besides these, morphological properties of these NPs were studied by transmission electron microscopic (TEM) investigation, justifying the elemental constitution through energy dispersive X-ray analysis (EDX). Further, biological cellular uptake of these nanoparticles have been demonstrated on cancerous HeLa cells and reported with total fetal effect after 72 h, with CD templated GaO(OH) nanoparticles, a fact that has not been reported so far.
We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in-phase correlated intensity noises. This is shown to lead to very strong and in-phase correlations between the two lasing modes intensities. As a result, the phase noise power spectral density of the RF beat note generated by the two modes undergoes a drastic reduction of about 10 to 20 dB throughout the whole frequency range from 10 kHz to 20 MHz and falls below the detection floor above a few MHz. A good agreement is found with a model which uses the framework of rate equations coupled by cross-saturation. The remaining phase noise is attributed to thermal effects and additional technical noises and lies mainly within the bandwidth of a phase-locked-loop.
Propagation of two pumps and degenerate signal in a dispersion oscillating fiber (DOF) is investigated analytically and numerically. Unlike the single-pump case, the gain side-bands are found to be influenced by the generated high-order pumps.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We propose a new architecture of phase sensitive optical frequency converter based on dual-pump phase sensitive amplification in a highly nonlinear fiber. This frequency converter allows generation of extra tones through nonlinear four-wave mixing between two strong pumps and an input tone. The frequency channel to which the input tone is converted can be chosen by adjusting the phase of the input signal. The conversion efficiency and extinction ratio of this frequency converter are predicted and optimized and its noise figure is calculated using a numerical approach based on the nonlinear Schrödinger equation. A semi-classical noise figure calculation for this approach was used and validated using an analytical fully quantum calculation based on the multi-wave model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.