Intratumoral heterogeneity is a major obstacle to cancer treatment and a significant confounding factor in bulk-tumor profiling. We performed an unbiased analysis of transcriptional heterogeneity in colorectal tumors and their microenvironments using single-cell RNA-seq from 11 primary colorectal tumors and matched normal mucosa. To robustly cluster single-cell transcriptomes, we developed reference component analysis (RCA), an algorithm that substantially improves clustering accuracy. Using RCA, we identified two distinct subtypes of cancer-associated fibroblasts (CAFs). Additionally, epithelial-mesenchymal transition (EMT)-related genes were found to be upregulated only in the CAF subpopulation of tumor samples. Notably, colorectal tumors previously assigned to a single subtype on the basis of bulk transcriptomics could be divided into subgroups with divergent survival probability by using single-cell signatures, thus underscoring the prognostic value of our approach. Overall, our results demonstrate that unbiased single-cell RNA-seq profiling of tumor and matched normal samples provides a unique opportunity to characterize aberrant cell states within a tumor.
In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<OR<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
Single cell messenger RNA sequencing (scRNA-seq) provides a window into transcriptional landscapes in complex tissues. The recent introduction of droplet based transcriptomics platforms has enabled the parallel screening of thousands of cells. Large-scale single cell transcriptomics is advantageous as it promises the discovery of a number of rare cell sub-populations. Existing algorithms to find rare cells scale unbearably slowly or terminate, as the sample size grows to the order of tens of thousands. We propose Finder of Rare Entities (FiRE), an algorithm that, in a matter of seconds, assigns a rareness score to every individual expression profile under study. We demonstrate how FiRE scores can help bioinformaticians focus the downstream analyses only on a fraction of expression profiles within ultra-large scRNA-seq data. When applied to a large scRNA-seq dataset of mouse brain cells, FiRE recovered a novel sub-type of the pars tuberalis lineage.
The emergence of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to measure the expression levels of thousands of genes at single-cell resolution. However, insufficient quantities of starting RNA in the individual cells cause significant dropout events, introducing a large number of zero counts in the expression matrix. To circumvent this, we developed an autoencoder-based sparse gene expression matrix imputation method. AutoImpute, which learns the inherent distribution of the input scRNA-seq data and imputes the missing values accordingly with minimal modification to the biologically silent genes. When tested on real scRNA-seq datasets, AutoImpute performed competitively wrt., the existing single-cell imputation methods, on the grounds of expression recovery from subsampled data, cell-clustering accuracy, variance stabilization and cell-type separability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.