Ions of structure X[N(O)NO]- display broad-spectrum pharmacological activity that correlates with the rate and extent of their spontaneous, first-order decomposition to nitric oxide when dissolved. We report incorporation of this functional group into polymeric matrices that can be used for altering the time course of nitric oxide release and/or targeting it to tissues with which the polymers are in physical contact. Structural types prepared include those in which the [N(O)NO]- group is attached to heteroatoms in low molecular weight species that are noncovalently distributed throughout the polymeric matrix, in groupings pendant to the polymer backbone, and in the polymer backbone itself. They range in physical form from films that can be coated onto other surfaces to microspheres, gels, powders, and moldable resins. Chemiluminescence measurements confirm that polymers to which the [N(O)NO]- group is attached can serve as localized sources of nitric oxide, with one prototype providing sustained NO release for 5 weeks in pH 7.4 buffer at 37 degrees C. The latter composition, a cross-linked poly-(ethylenimine) that had been exposed to NO, inhibited the in vitro proliferation of rat aorta smooth muscle cells when added as a powder to the culture medium and showed potent antiplatelet activity when coated on a normally thrombogenic vascular graft situated in an arteriovenous shunt in a baboon's circulatory system. The results suggest that polymers containing the [N(O)NO]- functional group may hold considerable promise for a variety of biomedical applications in which local delivery of NO is desired.
BACKGROUND:Protecting the skin against moisture-associated damage is an important component of comprehensive skin and wound care. Based on a review of literature, the authors propose key interventions to protect and prevent damage in the skin folds, perineum, and areas surrounding a wound or stoma.OBJECTIVE:The aim of this scoping review is to identify and provide a narrative integration of the existing evidence related to the management and prevention of moisture-associated skin damage (MASD).METHODS:Study authors searched several databases for a broad spectrum of published and unpublished studies in English, published between 2000 and July 2015. Selected study information was collated in several different formats; ultimately, key findings were aggregated into a thematic description of the evidence to help generate a set of summative statements or recommendations.RESULTS:Based on inclusion criteria, 37 articles were considered appropriate for this review. Findings included functional definitions and prevalence rates of the 4 types of MASD, assessment scales for each, and 7 evidence-based strategies for the management of MASD.CONCLUSIONS:Based on this scoping review of literature, the authors propose key interventions to protect and prevent MASD including the use of barrier ointments, liquid polymers, and cyanoacrylates to create a protective layer that simultaneously maintains hydration levels while blocking external moisture and irritants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.