Ions of structure X[N(O)NO]- display broad-spectrum pharmacological activity that correlates with the rate and extent of their spontaneous, first-order decomposition to nitric oxide when dissolved. We report incorporation of this functional group into polymeric matrices that can be used for altering the time course of nitric oxide release and/or targeting it to tissues with which the polymers are in physical contact. Structural types prepared include those in which the [N(O)NO]- group is attached to heteroatoms in low molecular weight species that are noncovalently distributed throughout the polymeric matrix, in groupings pendant to the polymer backbone, and in the polymer backbone itself. They range in physical form from films that can be coated onto other surfaces to microspheres, gels, powders, and moldable resins. Chemiluminescence measurements confirm that polymers to which the [N(O)NO]- group is attached can serve as localized sources of nitric oxide, with one prototype providing sustained NO release for 5 weeks in pH 7.4 buffer at 37 degrees C. The latter composition, a cross-linked poly-(ethylenimine) that had been exposed to NO, inhibited the in vitro proliferation of rat aorta smooth muscle cells when added as a powder to the culture medium and showed potent antiplatelet activity when coated on a normally thrombogenic vascular graft situated in an arteriovenous shunt in a baboon's circulatory system. The results suggest that polymers containing the [N(O)NO]- functional group may hold considerable promise for a variety of biomedical applications in which local delivery of NO is desired.
Nitric oxide is an important cytotoxic agent for host defense which also regulates gene expression, signal transduction, and vasodilation. In normal wounds, nitric oxide synthesis and metabolism are significantly increased during inflammation and tissue remodeling. However, nitric oxide production is suppressed in wounds where healing is impaired by diabetes or steroid-treatment. Topical delivery of nitric oxide in therapeutic amounts may alleviate this deficiency and thereby enhance wound repair. Consequently, we developed polyethyleneimine cellulose NONOate polymer, a nonsoluble, nontoxic, polymer-based NONOate--one of a new class of compounds that spontaneously release nitric oxide in a controlled fashion in aqueous media. Polyethyleneimine cellulose NONOate polymer was synthesized from polyethyleneimine cellulose to provide extended nitric oxide release with a half-life of 16 hours. Polyethyleneimine cellulose NONOate polymer or a control polymer was applied topically on full-thickness dermal wounds of rats at the time of wounding and days 3, 7, 10, 14, 17, and 21. Nitric oxide delivery was determined indirectly by measuring urinary nitrate. The first two polyethyleneimine cellulose NONOate polymer applications increased urinary nitrate output twofold to fourfold, whereas urinary nitrate output of control rats did not significantly increase. Nitrate output in polyethyleneimine cellulose NONOate polymer-treated rats was elevated compared with controls after each application, although this was attenuated in later applications. Rate of wound closure was measured with computer-based video imaging. Polyethyleneimine cellulose NONOate polymer-treated wounds were significantly smaller (p < 0.05) on days 7, 10, and 17 relative to controls, based on percentage of wound open relative to initial wound area. In a second experiment, telemetry-implanted rats were wounded to detect potential hypotensive effects as a result of polyethyleneimine cellulose NONOate polymer application. Topical polyethyleneimine cellulose NONOate polymer application to wounds showed no prolonged hypotensive effects, in contrast to a soluble NONOate which suppressed systolic blood pressure for over 6 hours. These results show that a nonsoluble, polymeric NONOate can provide topical nitric oxide delivery to wounds in a controlled manner, which may enhance wound healing. Further studies are in progress with other promising NONOate candidates to establish dose-response effects and therapeutic limits of exogenous nitric oxide release in impaired wound models.
A novel cationic delivery system composed of magnetic aminodextran microspheres (MADM) 1-2 microm in diameter was evaluated along with neutral magnetic dextran microspheres (MDM) for their ability to target intracerebral rat glioma-2 (RG-2) tumors in vivo. The tissue distribution of the microspheres was determined following intraarterial injection (25 mg/kg) over 2 min in male Fisher 344 rats bearing RG-2 tumors as well as normal animals with a magnetic field of 0 or 0.6 T applied to the brain for 30 min. Animals were sacrificed at 30 min or 6 h post-injection after which the microspheres were recovered from various tissues and analyzed for magnetite (Fe3O4) content by atomic absorption. Overall, administration of cationic MADM and neutral MDM particles in normal animals resulted in low brain tissue concentrations with the highest concentrations observed in lung and spleen tissue. In contrast, studies in brain tumor bearing animals resulted in cationic MADM particles concentrating in brain tumor at levels significantly higher than neutral MDM particles (p = 0.0111). Cationic particles were also retained in brain tissue over a longer period of time compared to neutral particles (p = 0.0161) with MADM tumor concentrations decreasing only 4% after 6h compared with a 32% decrease for MDM. Application of a magnetic field failed to produce any significant effect on tissue distribution due to high variability in these groups, but generally resulted in increased brain concentrations and decreased non-target tissue concentrations. TEM analysis of brain tissue sections in tumor animals also revealed differences in particle distribution with MADM particles observed in the interstitial space and MDM particles trapped in the vasculature. In summary, particle charge, state of the vascular endothelium and time significantly influenced particle distribution contributing to the ability of MADM to selectively target brain tumor and supports further investigation of magnetic cationic microspheres as a targeted drug delivery system for brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.