Summary1. Stable isotope analysis is often used to identify the relative contributions of various food resources to a consumer's diet. Some Bayesian isotopic mixing models now incorporate uncertainty in the isotopic signatures of consumers, sources and trophic enrichment factors (e.g. SIAR, MixSIR). This had made model outputs more comprehensive, but at the expense of simple model evaluation, and there is no quantitative method for determining whether a proposed mixing model is likely to explain the isotopic signatures of all consumers, before the model is run. 2. Earlier linear mixing models (e.g. IsoSource) are easier to evaluate, such that if a consumer's isotopic signature is outside the mixing polygon bounding the proposed dietary sources, then mass balance cannot be established and there is no logical solution. This can be used to identify consumers for exclusion or to reject a model outright. This point-in-polygon assumption is not inherent in the Bayesian mixing models, because the source data are distributions not average values, and these models will quantify source contributions even when the solution is very unlikely. 3. We use a Monte Carlo simulation of mixing polygons to apply the point-in-polygon assumption to these models. Convex hulls ('mixing polygons') are iterated using the distributions of the proposed dietary sources and trophic enrichment factors, and the proportion of polygons that have a solution (i.e. that satisfy point-in-polygon) is calculated. This proportion can be interpreted as the frequentist probability that the proposed mixing model can calculate source contributions to explain a consumer's isotopic signature. The mixing polygon simulation is visualised with a mixing region, which is calculated by testing a grid of values for point-in-polygon. 4. The simulation method enables users to quantitatively explore assumptions of stable isotope analysis in mixing models incorporating uncertainty, for both two-and three-isotope systems. It provides a quantitative basis for model rejection, for consumer exclusion (those outside the 95% mixing region) and for the correction of trophic enrichment factors. The simulation is demonstrated using a two-isotope study ( 15 N, 13 C) of an Australian freshwater food web.
Estimates of carbon store and carbon accumulation rate in mangrove and saltmarsh are beset by issues of scale and provenance. Estimates at a site do not allow scaling to regional estimates if the drivers of variability are not known. Also, carbon accumulation within soils provides a net offset only if carbon is derived in-situ, or would not otherwise be sequestered. We use a network of observation sites extending across 2000 km of southeastern Australian coastline to determine the influence of geomorphic setting and coastal wetland vegetation type on rates of carbon accumulation, carbon store and probable sources. Carbon accumulation above feldspar marker horizons over a 10-year period was driven primarily by tidal range and position in the tidal frame, and was higher for mangrove and saltmarsh dominated by Juncus kraussii than for other saltmarsh communities. The rate of carbon loss with depth varied between geomorphic settings and was the primary determinant of carbon store. A down-core enrichment in δ13C was consistent with an increased relative contribution of mangrove root material to soil carbon, as mangrove roots were found to be consistently enriched compared to leaves. We conclude that while surface carbon accumulation is driven primarily by tidal transport of allocthonous sediment, in-situ carbon sequestration is the dominant source of recalcitrant carbon, and that mangrove and saltmarsh carbon accumulation and store is high in temperate settings, particularly in mesotidal and fluvial geomorphic settings. AbstractEstimates of carbon store and carbon accumulation rate in mangrove and saltmarsh are beset by issues of scale and provenance. Estimates at a site do not allow scaling to regional estimates if the drivers of variability are not known. Also, carbon accumulation within soils provides a net offset only if carbon is derived in-situ, or would not otherwise be sequestered.We use a network of observation sites extending across 2000 km of southeastern Australian coastline to determine the influence of geomorphic setting and coastal wetland vegetation type on rates of carbon accumulation, carbon store and probable sources. Carbon accumulation above feldspar marker horizons over a 10-year period was driven primarily by tidal range and position in the tidal frame, and was higher for mangrove and saltmarsh dominated by Juncus kraussii than for other saltmarsh communities. The rate of carbon loss with depth varied between geomorphic settings and was the primary determinant of carbon store. A down-core enrichment in δ 13 C was consistent with an increased relative contribution of mangrove root material to soil carbon, as mangrove roots were found to be consistently enriched compared to leaves. We conclude that while surface carbon accumulation is driven primarily by tidal transport of allocthonous sediment, in-situ carbon sequestration is the dominant source of recalcitrant carbon, and that mangrove and saltmarsh carbon accumulation and store is high in temperate settings, particularly in mesotidal ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.