Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).
Schizophrenia is thought as a self-disorder with dysfunctional brain connectivity. This self-disorder is often attributed to high-order cognitive impairment. Yet due to the frequent report of sensorial and perceptual deficits, it has been hypothesized that self-disorder in schizophrenia is dysfunctional communication between sensory and cognitive processes. To further verify this assumption, the present study comprehensively examined dynamic reconfigurations of resting-state functional connectivity (rsFC) in schizophrenia at voxel level, region level, and network levels (102 patients vs. 124 controls). We found patients who show consistently increased rsFC variability in sensory and perceptual system, including visual network, sensorimotor network, attention network, and thalamus at all the three levels. However, decreased variability in high-order networks, such as default mode network and frontal–parietal network were only consistently observed at region and network levels. Taken together, these findings highlighted the rudimentary role of elevated instability of information communication in sensory and perceptual system and attenuated whole-brain integration of high-order network in schizophrenia, which provided novel neural evidence to support the hypothesis of disrupted perceptual and cognitive function in schizophrenia. The foci of effects also highlighted that targeting perceptual deficits can be regarded as the key to enhance our understanding of pathophysiology in schizophrenia and promote new treatment intervention.
Our understanding of cerebellar involvement in brain disorders has evolved from motor processing to high-level cognitive and affective processing. Recent neuroscience progress has highlighted hierarchy as a fundamental principle for the brain organization. Despite substantial research on cerebellar dysfunction in schizophrenia, there is a need to establish a neurobiological framework to better understand the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellum in schizophrenia. To help to establish such a framework, we investigated the abnormalities in the distribution of sensorimotor-supramodal hierarchical processing topography in the cerebellum and cerebellar-cerebral circuits in schizophrenia using a novel gradient-based resting-state functional connectivity (FC) analysis (96 patients with schizophrenia vs 120 healthy controls). We found schizophrenia patients showed a compression of the principal motor-to-supramodal gradient. Specifically, there were increased gradient values in sensorimotor regions and decreased gradient values in supramodal regions, resulting in a shorter distance (compression) between the sensorimotor and supramodal poles of this gradient. This pattern was observed in intra-cerebellar, cerebellar-cerebral, and cerebral-cerebellar FC. Further investigation revealed hyper-connectivity between sensorimotor and cognition areas within cerebellum, between cerebellar sensorimotor and cerebral cognition areas, and between cerebellar cognition and cerebral sensorimotor areas, possibly contributing to the observed compressed pattern. These findings present a novel mechanism that may underlie the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellar and cerebro-cerebellar circuits in schizophrenia. Within this framework of abnormal motor-to-supramodal organization, a cascade of impairments stemming from disrupted low-level sensorimotor system may in part account for high-level cognitive cerebellar dysfunction in schizophrenia.
Background Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Methods We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). Results We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). Conclusions The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.