Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).
Black melanin-like pigments are produced by several neurotropic fungi, including Cryptococcus neoformans. Pigment production is associated with virulence. In media containing phenolic substrates such as L-dopa, C. neoformans cells become black as a result of pigment accumulation. Pigmented and nonpigmented C. neoformans cells were studied with transmission electron microscopy and electron spin resonance (ESR) spectroscopy. Transmission electron microscopy showed electron-dense cell walls, and ESR spectroscopy revealed a stable free-radical population in pigmented cells. The ESR signals of pigmented cells were increased by light, alkaline pH, and Zn 2؉ and decreased by acid pH, indicating that the black pigment was a type of melanin. A mutant deficient in melanin synthesis (mel) generated by UV radiation lacked ESR-detectable radicals, was less virulent for mice, was more susceptible to killing by nitrogen-and oxygen-derived radicals, and had 100-foldless phenoloxidase activity than the parent strain. The interaction of melanized C. neoformans, nonmelanized C. neoformans, and the hypomelanotic mel mutant with J774.16 murine macrophage-like cells was studied. Melanized cells were more resistant to antibody-mediated phagocytosis and the antifungal effects of murine macrophages than nonmelanized cells. Small increases in the intensity of the ESR signals of melanized cells in solutions containing chemically generated oxygen-and nitrogen-derived radicals indicated electron transfer to or from melanin. Melanin appears to contribute to virulence by protecting fungal cells against attack by immune effector cells.
Air filtration materials (AFMs) have gradually become a research hotspot on account of the increasing attention paid to the global air quality problem. However, most AFMs cannot balance the contradiction between high filtration efficiency and low pressure drop. Electrospinning nanofibers have a large surface area to volume ratio, an adjustable porous structure, and a simple preparation process that make them an appropriate candidate for filtration materials. Therefore, electrospun nanofibers have attracted increased attention in air filtration applications. In this paper, first, the preparation methods of high-performance electrospun air filtration membranes (EAFMs) and the typical surface structures and filtration principles of electrospun fibers for air filtration are reviewed. Second, the research progress of EAFMs with multistructures, including nanoprotrusion, wrinkled, porous, branched, hollow, core–shell, ribbon, beaded, nets structure, and the application of these nanofibers in air filtration are summarized. Finally, challenges with the fabrication of EAFMs, limitations of their use, and trends for future developments are presented.
Salvinorin A, acrylamido]morphinan hydrochloride), and 3FLB (diethyl 2,4-di-[3-fluorophenyl]-3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane-9-one-1,5-dicarboxylate) are structurally distinctly different from U50,488H [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate], the prototypic selective agonist. Here, we investigated their in vitro pharmacological activities on receptors expressed in Chinese hamster ovary cells and in vivo antiscratch and antinociceptive activities in mice. All three compounds showed high selectivity for the opioid receptor (KOR) over the opioid receptor (MOR) and ␦ opioid receptor (DOR) and nociceptin or orphanin FQ receptors. In the guanosine 5Ј-O-(3-[35 S]thio)triphosphate ([ 35 S]GTP␥S) binding assay, all three were full agonists on the KOR. The rank order of affinity and potency for the KOR was TRK-820 Ͼ Ͼ U50,488H ϳ salvinorin A Ͼ Ͼ 3FLB. TRK-820 acted as a partial agonist on MOR and DOR, whereas salvinorin A and 3FLB showed no activities on these receptors. Salvinorin A, TRK-820, and 3FLB caused internalization of the human KOR in a dosedependent manner. Interestingly, although salvinorin A and U50,488H had similar potencies in stimulating [ 35 S]GTP␥S binding, salvinorin A was about 40-fold less potent than U50,488H in promoting internalization. Following 4-h incubation, all three compounds induced down-regulation of the human KOR, with salvinorin A causing a lower extent of down-regulation. Although TRK-820 was potent and efficacious against compound 48/80-induced scratching, salvinorin A showed low and inconsistent effects, and 3FLB was inactive. In addition, salvinorin A and 3FLB were not active in the acetic acid abdominal constriction test. The discrepancy between in vitro and in vivo results may be due to in vivo metabolism of salvinorin A and 3FLB and possibly to their effects on other pharmacological targets.At least three types of opioid receptors, , ␦, and , mediate pharmacological effects of opioid drugs and physiological actions of endogenous peptides (for review, see Chang, 1984;Mansour et al., 1988). Opioid receptors are coupled to G i /G o proteins to affect several different effectors, including inhibition of adenylyl cyclase, enhancement of K ϩ conductance, decrease in Ca 2ϩ conductance, and activation of p42/p44 mitogen-activated protein kinases (for review, see Law et al., 2000). In addition, opioid receptors are shown to act through Gz to inhibit adenylyl cyclase and G 16 to activate phospholipase C (Lai et al., 1995;Lee et al., 1998), and opioid receptors stimulate Na , ␦, and opioid receptors of several species have been cloned (for review, see Kieffer, 1995;Knapp et al., 1995). In addition, a receptor with high sequence similarity to the opioid receptors, termed the ORL1 receptor, was cloned and found to be coupled to G i /G o proteins (for review, see Kieffer, 1995;Knapp et al., 1995). Subsequently, the endogenous ligand for the ORL1 receptor was identified and named noThis work was supported by National I...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.