The domain of noise fading from digital images, by virtue of its enormous appellation amongst the researchers, stands out uniquely in the recent research field of image processing over the last few decades. Periodic noises are unintended spurious signals which often agitate an image during acquisition/transmission, thereby resulting in repetitive patterns having spatial dependency and extensively demeaning visual excellence of the image. However, high amplitude noisy spectral components are clearly noticeable from the remaining uncorrupted ones in the corresponding Fourier transformed corrupted image spectrum. Hence, it is easier to distinguish and minimise those noisy components using an appropriate thresholding and filtration technique. Therefore, to start with, a simple yet elegant model of the noise-free natural image has been developed from the corrupted one followed by a proper thresholding method to get the noisy bitmap. Finally, an elegant adaptive sinc restoration filter with the concept of extracting the exact shape of a noise spectrum profile has been applied in the filtration phase. The performance of the proposed algorithm has been assessed both visually and statistically with other state-of-the-art algorithms in the literature in terms of various performance measurement attributes, providing evidence of achieving more effective restoration with considerable lower computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.