The coronavirus disease (COVID-19) affected virtually all countries. Uncertain about the health risk and an increasing financial loss will contribute to widespread emotional distress and an increased risk of psychiatric disorders shortly. Posttraumatic, anxiety, and depression disorders are expected during and aftermath of the pandemic. Some groups, like children, have more susceptibility to having long term consequences in mental health. Herein, we made a comprehensive and non-systematic search in four databases (PubMed, Scopus, SciELO, and Google Scholars) to answer the question: What are children's and adolescents' mental health effects of the pandemic? Furthermore, which features are essential for mental health in a pandemic? Results: Seventy-seven articles were selected for full text read, and 51 were included. Children answer stress differently, depending on the development stage. High rates of anxiety, depression, and post-traumatic symptoms were identified among children. Discussion: Symptoms were as expected. New supportive strategies have appeared during this pandemic, but there is no measure of its effectiveness. Some groups seem to be more vulnerable to the mental health burden of the COVID-19 pandemic, and the mitigation actions should prioritize them. The school's role appears to be revalued by society. This review seems to pick good targets to prioritize mitigation actions aiming to spare children not only from the severe cases of COVID-19 but also to help them to deal with the mental health burden of the pandemics.
Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (i.e. affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12, and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3, and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.
Neuromodulation of deep brain structures (deep brain stimulation) is the current surgical procedure for treatment of Parkinson's disease (PD). Less studied is the stimulation of cortical motor areas to treat PD symptoms, although also known to alleviate motor disturbances in PD. We were able to show that optogenetic activation of secondary (M2) motor cortex improves motor functions in dopamine-depleted male mice. The stimulated M2 cortex harbors glutamatergic pyramidal neurons that project to subcortical structures, critically involved in motor control, and makes synaptic contacts with dopaminergic neurons. Strikingly, optogenetic activation of M2 neurons or axons into the dorsomedial striatum increases striatal levels of dopamine and evokes locomotor activity. We found that dopamine neurotransmission sensitizes the locomotor behavior elicited by activation of M2 neurons. Furthermore, combination of intranigral infusion of glutamatergic antagonists and circuit specific optogenetic stimulation revealed that behavioral response depended on the activity of M2 neurons projecting to SNc. Interestingly, repeated M2 stimulation combined with L-DOPA treatment produced an unanticipated improvement in working memory performance, which was absent in control mice under L-DOPA treatment only. Therefore, the M2-basal ganglia circuit is critical for the assembly of the motor and cognitive function, and this study demonstrates a therapeutic mechanism for cortical stimulation in PD that involves recruitment of long-range glutamatergic projection neurons.
Previously the Slit and Trk-like family member 1 (SLITRK1) gene was identified as a candidate gene for Gilles de la Tourette Syndrome (GTS) based on a patient that carried a chromosomal inversion on 13q, as well as the identification of two rare DNA variants in the SLITRK1 gene. Since that report, studies have tested for the two rare variants in GTS and either did not find them, or when found, they did not segregate with the disorder in families, casting doubt on the relationship of this gene to GTS. We tested for these two rare variants and genotyped three polymorphisms that tag the currently identified major haplotypes of this gene in a sample of 154 nuclear families with GTS. In addition, the entire coding region was screened for novel DNA variants. We did not find the two reported rare variants in any of the probands or siblings in these families. We did however find significant evidence for association of a single polymorphism and of haplotypes of the three tagging polymorphisms. These findings provide the first support for the original finding indicating SLITRK1 as a susceptibility gene for GTS and indicate that further study of this gene in GTS is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.