Previous literature has demonstrated that hypoglycemic events in patients with type 1 diabetes (T1D) are associated with measurable scalp electroencephalography (EEG) changes in power spectral density. In the present study, we used a dataset of 19-channel scalp EEG recordings in 34 patients with T1D who underwent a hyperinsulinemic–hypoglycemic clamp study. We found that hypoglycemic events are also characterized by EEG complexity changes that are quantifiable at the single-channel level through empirical conditional and permutation entropy and fractal dimension indices, i.e., the Higuchi index, residuals, and tortuosity. Moreover, we demonstrated that the EEG complexity indices computed in parallel in more than one channel can be used as the input for a neural network aimed at identifying hypoglycemia and euglycemia. The accuracy was about 90%, suggesting that nonlinear indices applied to EEG signals might be useful in revealing hypoglycemic events from EEG recordings in patients with T1D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.