Leishmaniasis is one of the six major tropical diseases targeted by the World Health Organization. It is a life-threatening disease of medical, social and economic importance in endemic areas. No vaccine is yet available for human use, and chemotherapy presents several problems. Pentavalent antimonials have been the drugs of choice to treat the disease for more than six decades; however, they exhibit high toxicity and are not indicated for children, for pregnant or breastfeeding women or for chronically ill patients. Amphotericin B (AmpB) is a second-line drug, and although it has been increasingly used to treat visceral leishmaniasis (VL), its clinical use has been hampered due to its high toxicity. This review focuses on the development and in vivo usage of new delivery systems for AmpB that aim to decrease its toxicity without altering its therapeutic efficacy. These new formulations, when adjusted with regard to their production costs, may be considered new drug delivery systems that promise to improve the treatment of leishmaniasis, by reducing the side effects and the number of doses while permitting a satisfactory cost-benefit rati
A clioquinol (ICHQ)-containing Pluronic® F127 polymeric micelle system (ICHQ/Mic) was recently shown to be effective against Leishmania amazonensis infection in a murine model. In the present study, ICHQ/Mic was tested against L. infantum infection. BALB/c mice (n = 12 per group) were infected with L. infantum stationary promastigotes through subcutaneous injection and, 45 days after challenge, received saline or were treated via the subcutaneous route with empty micelles, ICHQ or ICHQ/Mic. In addition, animals were treated with miltefosine by the oral route, as a drug control. Half of the animals were euthanized 1 and 15 days after treatment, aiming to evaluate two endpoints after therapy, when parasitological and immunological parameters were investigated. Results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significantly higher anti-parasite IFN-γ, IL-12, GM-CSF, nitrite and IgG2a isotype antibody levels, which were associated with low IL-4 and IL-10 production. In addition, a higher frequency of IFN-γ and TNF-α-producing CD4+ and CD8+ T-cells was found in these animals. The parasite load was evaluated in distinct organs, and results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significant reductions in organic parasitism in the treated and infected mice. A comparison between the treatments suggested that ICHQ/Mic was the most effective in inducing a highly polarized Th1-type response, as well as reducing the parasite load in significant levels in the treated and infected animals. Data obtained 15 days after treatment suggested maintenance of the immunological and parasitological responses. In conclusion, ICHQ/Mic could be considered in future studies for the treatment of visceral leishmaniasis.
In this study, a quinoline derivate, clioquinol (5-chloro-7-iodoquinolin-8-ol), was evaluated against Leishmania amazonensis and Leishmania infantum promastigotes and amastigotes. The cytotoxicity in murine macrophages and human red blood cells, as well as the efficacy in treating infected macrophages and the inhibition of infection using pre-treated parasites were also evaluated. Results showed that clioquinol inhibited L. amazonensis and L. infantum promastigotes with effective concentration 50% (EC ) values of 2.55 ± 0.25 and 1.44 ± 0.35 μg/mL, respectively, and of 1.88 ± 0.13 and 0.98 ± 0.17 μg/mL against axenic amastigotes, respectively. The cytotoxic EC concentrations of clioquinol in murine macrophages and human red blood cells were, respectively, 255 ± 23 and 489 ± 20 μg/mL. With these results, the selectivity index was calculated, showing values of 99.9 and 177.1 against promastigotes, respectively, and of 135.6 and 260.1 against axenic amastigotes, respectively. Significant reductions in the percentage of infected macrophages after treatment using clioquinol were also observed, as well as when parasites were pre-treated with clioquinol and used to infect murine macrophages. The mechanism of action of clioquinol was investigated in L. amazonensis, and results revealed morphological and biochemical alterations in the clioquinol-treated parasites, including reduction in cell volume, loss of mitochondrial membrane potential, increase in the ROS production and rupture of the plasma membrane. The externalization of phosphatidylserine (PS) at the cell surface was evaluated in treated parasites that had been doubly labelled with annexin and propidium iodide (PI). The results showed no significant difference for PS exposure when compared to the untreated control, although a significant increase in the PI/annexin V-labelled cell population was found in the treated parasites. Results suggest that clioquinol induces a discontinuity of the parasite membrane, possibly related to a characteristic event of cell death caused by necrosis. This study demonstrates, for the first time, the antileishmanial activity of clioquinol against two relevant Leishmania species and suggests that the mitochondria of the parasites may be a possible biological target leading to parasite necrosis. Our findings suggest that clioquinol may have a potential application in treatment of leishmaniasis and further studies should be performed in infected mammalian hosts.
Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4 + and CD8 + T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.
Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.