BackgroundThe National NeuroAIDS Tissue Consortium (NNTC) performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders.MethodsTwenty-four human subjects in four groups were examined A) Uninfected controls; B) HIV-1 infected subjects with no substantial neurocognitive impairment (NCI); C) Infected with substantial NCI without HIV encephalitis (HIVE); D) Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.ResultsWith HIVE the HIV-1 RNA load in brain tissue was three log10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs), antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.InterpretationTwo patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In subjects without impairment regulation of genes that drive neostriatal synaptic plasticity reflects adaptation. The array provides an infusion of public resources including brain samples, clinicopathological data and correlative gene expression data for further exploration (http://www.nntc.org/gene-array-project).
HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV ؉ ) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCEIt is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV ؉ participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissueassociated HIV is present despite cART and can inform future studies into HIV persistence.
Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after infection and becomes localized in varying concentrations in different brain regions, the most vulnerable is the basal ganglia (BG). It is hypothesized that HIV-1-mediated neuropathogenesis involves degeneration of dopaminergic neurons in the substantia nigra and the loss of dopaminergic terminals in the BG, leading to deficits in the central dopaminergic activity, resulting in progressive impairment of neurocognitive and motor functions. In the era of highly active antiretroviral therapy (HAART), although the incidence of HIV-associated dementia (HAD) has decreased, the neurocognitive and neuropsychological deficits continue to persist after HAART. In this study, We investigated the impact of HIV-1 on dopaminergic activity with respect to concentrations of dopamine (DA) and homovanillic acid (HVA) in different regions of postmortem human brains of HIV-1-negative and HIV-1+ individuals and their relationship to neurocognitive impairment. We found that in HIV-1+ as well as HIV-negative cases, dopamine and HVA concentrations in ranged widely in different brain regions. In HIV-negative brain regions, the highest concentration of DA was found in putamen, caudate, substantia nigra, and the basal ganglia. In HIV-1+ cases, there was a significant decrease in DA levels in caudate nucleus, putamen, globus pallidus, and substantia nigra compared to that in HIV-negative cases. In HIV-1+ cases, a strong correlation was found between DA levels in substantia nigra and other brain regions. Concentration of HVA in HIV-negative cases was also highest in the regions containing high dopamine levels. However, no significant decrease in regional HVA levels was found in HIV-1+ cases. HIV-1 RNA load (nondetectable [ND] to log10 6.9 copies/g tissue) also ranged widely in the same brain regions of HIV-1+ cases. Interestingly, the brain regions having the highest HIV-1 RNA had the maximum decrease in DA levels. Age, gender, ethnicity, and postmortem interval were not correlated with decrease in DA levels. Profile of DA, HVA, and HIV-1 RNA levels in the brain regions of HIV-1+ individuals treated with HAART was similar to those not treated with HAART. A majority of HIV-1+ individuals had variable degrees of neurocognitive impairments, but no specific relationship was found between the regional DA content and severity of neurocognitive deficits. These findings suggest widespread deficits in dopamine in different brain regions of HIV-1-infected cases, and that these deficits may be the results of HIV-1-induced neurodegeneration in the subcortical regions of human brain.
Objective Replicating HIV-1 in the brain is present in HIV encephalitis (HIVE) and microglial nodule encephalitis (MGNE) and is putatively linked with HIV-associated neurocognitive disorders (HAND). A clinico-neurovirological correlation was conducted to elucidate the relationship between brain viral load and clinical phenotype. Subjects and assays HIV gag/pol RNA and DNA copies were quantified with RT-PCR or PCR in 148 HAART-era brain specimens. Comparison to HAND, HIVE and MGNE and correlation with neuropsychological (NP) test scores were done using one-way ANOVA with Tukey-Kramer and Spearman’s tests respectively. Results Brain HIV RNA was higher in subjects with HAND plus HIVE vs without HAND (delta = 2.48 log10 units, n = 27 vs 36, p < 0.001). In HAND without HIVE or MGNE, brain HIV RNA was not significantly different vs without HAND (p = 0.314). Worse NP scores correlated significantly with higher HIV RNA and interferon responses in brain specimens (p<0.001), but not with HIV RNA levels in premortem blood plasma (n = 114) or cerebrospinal fluid (n = 104). In subjects with MGNE, brain HIV RNA was slightly higher versus without MGNE (p<0.01), and much lower versus with HIVE (p<0.001). Conclusion Brain HIV RNA and to a lesser extent HIV DNA are correlated with worse NP performance in the 6 months before death. Linkage occurs primarily in patients with HIVE and MGNE; while on HAART these patients could obtain added NP improvement by further reducing brain HIV. Patients not in those groups are less certain to obtain added NP benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.