Flu is caused by the influenza virus that, due to mutations, keeps our body vulnerable for infections, making early diagnosis essential. Although immuno-based diagnostic tests are available, they have low sensitivity and reproducibility. In this paper, the prospect of detecting influenza A virus using digital ELISA has been studied. To appropriately select bioreceptors for this bioassay, seven commercial antibodies against influenza A nucleoprotein were methodically tested for their reactivity and binding affinity. The study has been performed on two markedly different platforms, being an enzyme-linked immunosorbent assay and a surface plasmon resonance system. The selected antibodies displayed completely different behavior on the two platforms and in various assay configurations. Surprisingly, the antibodies that showed overall good reactivity on both platforms had the highest dissociation constant among the tested antibodies, suggesting that, although important, binding affinity is not the only parameter to be considered when selecting antibodies. Moreover, only one antibody had the capacity to capture the nucleoprotein directly in lysis buffer used for releasing this viral protein, which might pose a huge advantage when developing assays with a fast time-to-result. This antibody was implemented on an in-house developed digital ELISA platform for ultrasensitive detection of recombinant nucleoprotein, reaching a detection limit of 4 ± 1 fM in buffer and 10 ± 2 fM in 10-fold diluted nasopharyngeal swabs, which is comparable to currently available fast molecular detection techniques. These results point to a great potential for ultrasensitive immuno-based influenza detection.
The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ± 7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ± 29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau values. The presented digital ELISA technology has great capacity in unlocking the potential of Tau as biomarker for early AD diagnosis.
Bead-based microwell array technology is growing as an ultrasensitive analysis tool as exemplified by the successful commercial applications from Illumina and Quanterix for nucleic acid analysis and ultrasensitive protein measurements, respectively. High-efficiency seeding of magnetic beads is key for these applications and is enhanced by hydrophilic-in-hydrophobic microwell arrays, which are unfortunately often expensive or labor-intensive to manufacture. Here, we demonstrate a new single-step manufacturing approach for imprinting cheap and disposable hydrophilic-in-hydrophobic microwell arrays suitable for digital bioassays. Imprinting of arrays with hydrophilic-in-hydrophobic microwells is made possible using an innovative surface energy replication approach by means of a hydrophobic thiol-ene polymer formulation. In this polymer, hydrophobic-moiety-containing monomers self-assemble at the hydrophobic surface of the imprinting stamp, which results in a hydrophobic replica surface after polymerization. After removing the stamp, microwells with hydrophobic walls and a hydrophilic bottom are obtained. We demonstrate that the hydrophilic-in-hydrophobic imprinted microwell arrays enable successful and efficient self-assembly of individual water droplets and seeding of magnetic beads with loading efficiencies up to 96%. We also demonstrate the suitability of the microwell arrays for the isolation and digital counting of single molecules achieving a limit of detection of 17.4 aM when performing a streptavidin-biotin binding assay as model system. Since this approach is up-scalable through reaction injection molding, we expect it will contribute substantially to the translation of ultrasensitive digital microwell array technology toward diagnostic applications.
The lab-on-a-chip (LOC) field has witnessed an excess of new technology concepts, especially for the point-of-care (POC) applications. However, only few concepts reached the POC market often because of challenging integration with pumping and detection systems as well as with complex biological assays. Recently, a new technology termed SIMPLE was introduced as a promising POC platform due to its features of being self-powered, autonomous in liquid manipulations, cost-effective and amenable to mass production. In this paper, we improved the SIMPLE design and fabrication and demonstrated for the first time that the SIMPLE platform can be successfully integrated with biological assays by quantifying creatinine, biomarker for chronic kidney disease, in plasma samples. To validate the robustness of the SIMPLE technology, we integrated a SIMPLE-based microfluidic cartridge with colorimetric read-out system into the benchtop Creasensor. This allowed us to perform on-field validation of the Creasensor in a single-blind study with 16 plasma samples, showing excellent agreement between measured and spiked creatinine concentrations (ICC: 0.97). Moreover, the range of clinically relevant concentrations (0.76-20 mg/dL), the sample volume (5 μL) and time-to-result of only 5 min matched the Creasensor performance with both lab based and POC benchmark technologies. This study demonstrated for the first time outstanding robustness of the SIMPLE in supporting the implementation of biological assays. The SIMPLE flexibility in liquid manipulation and compatibility with different sample matrices opens up numerous opportunities for implementing more complex assays and expanding its POC applications portfolio.
The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.