The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ± 7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ± 29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau values. The presented digital ELISA technology has great capacity in unlocking the potential of Tau as biomarker for early AD diagnosis.
Over the last decades, the study of cells, nucleic acid molecules, and proteins has evolved from ensemble measurements to so-called single-entity studies. The latter offers huge benefits, not only as biological research tools to examine heterogeneities among individual entities within a population, but also as biosensing tools for medical diagnostics, which can reach the ultimate sensitivity by detecting single targets. Whereas various techniques for single-entity detection have been reported, this review focuses on microfluidic systems that physically confine single targets in small reaction volumes. We categorize these techniques as droplet-, microchamber-, and nanostructure-based and provide an overview of their implementation for studying single cells, nucleic acids, and proteins. We furthermore reflect on the advantages and limitations of these techniques and highlight future opportunities in the field.
Patterning of micro- and nanoscale topologies and surface properties of polymer devices is of particular importance for a broad range of life science applications, including cell-adhesion assays and highly sensitive bioassays. The manufacturing of such devices necessitates cumbersome multiple-step fabrication procedures and results in surface properties which degrade over time. This critically hinders their wide-spread dissemination. Here, we simultaneously mold and surface energy pattern microstructures in off-stoichiometric thiol-ene by area-selective monomer self-assembly in a rapid micro-reaction injection molding cycle. We replicated arrays of 1,843,650 hydrophilic-in-hydrophobic femtolitre-wells with long-term stable surface properties and magnetically trapped beads with 75% and 87.2% efficiency in single- and multiple-seeding events, respectively. These results form the basis for ultrasensitive digital biosensors, specifically, and for the fabrication of medical devices and life science research tools, generally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.