Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks...
Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants can escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent COVID-19 patient, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 Wuhan, alpha, beta, gamma and delta infection in vitro. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 μg/ml, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.
Advancements in lab‐on‐a‐chip technologies have revolutionized the single‐cell analysis field. However, an accessible platform for in‐depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell‐retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment‐tolerant populations. Second, B cells from convalescent COVID‐19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS‐CoV‐2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.