Background: Monkeypox is a global public health issue caused by the monkeypox virus (MPXV), a virus belonging to the Orthopoxvirus genus. As of October 28 2022, a total of 77,115 laboratory-confirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the current SARS-CoV-2 pandemic. With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox. Methods: The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as: monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, and Diagnosis and Detection searched separately or together using the Boolean operator AND either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022. Results: We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review. Conclusion: This paper presents new perspectives and an overview of current methods, technologies, and applications in the molecular diagnosis of monkeypox. It is evident there is a pressing need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population. It is extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.
This paper reports on the development of nanoparticles aiming at the in vitro controlled release of simvastatin (SVT). The nanoparticles were prepared by the nanoprecipitation method with polymers Eudragit ® FS30D (EDGFS) or Eudragit ® NE30D (EDGNE). EDGFS+SVT nanoparticles showed mean size of 148.8 nm and entrapment efficiency of 76.4%, whereas EDGNE+SVT nanoparticles showed mean size of 105.0 nm and entrapment efficiency of 103.2%. Infrared absorption spectra demonstrated that SVT incorporated into the polymer matrix, especially EDGNE. Similarly, the differential scanning calorimeter (DSC) curve presented no endothermic peak of fusion, indicating that the system is amorphous and the drug is not in the crystalline state. The maintenance of SVT in the amorphous state may favors its solubilization in the target release sites. In the in vitro dissolution assay, the SVT incorporated into the EDGFS+SVT nanoparticles showed a rapid initial release, which may be related to the pH of the dissolution medium used. Regarding the EDGNE+SVT nanoparticles, the in vitro release occurred in a bimodal behavior, i.e., an initial "burst" followed by a sustained delivery, with the kinetics of drug release following Baker-Lonsdale's mathematical model. All these features suggest the nanoparticulate system's potential to modulate SVT delivery and enhance its bioavailability.
Background: Monkeypox is a global public health issue caused by the monkeypox virus (MPXV). As of October 28, 2022, a total of 77,115 laboratory-confirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the SARS-CoV-2 pandemic. Objective: With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox, focusing the search on real-time polymerase chain reaction (qPCR), polymerase chain reaction (PCR), and polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). Methods: The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, diagnosis and detection searched separately or together using the Boolean operator “AND” either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022. Results: We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review. Conclusion: It is evident there is a pressing need to develop national technologies for rapid diagnosis of emerging diseases for mass testing of the population. It is also extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.