TAL and high Treg frequency in primary thyroid tumors correlates with more aggressive disease. Future prospective studies may identify Treg frequency as a predictive factor in PTC, and the suppressive effects of Treg should be considered in the design of immune-based therapies.
Supplemental Digital Content is available in the text
Background: The vitamin D receptor (VDR) has been studied as a novel target for cancer therapy in many tissue types as VDR ligands decrease cell proliferation in vitro and decrease tumor growth in vivo in sensitive cells. The objective of this study was to analyze the response to VDR agonist therapy in a panel of validated thyroid cancer cells and assess genetic markers predicting sensitivity and resistance to calcitriol and the noncalcemic analog DP006. Methods: Thyroid cancer cell lines were analyzed for VDR and RXR protein by Western blot. Cell growth after VDR agonist treatment (calcitriol or DP006) was assessed after 6 days of treatment by viable cell assay. To investigate calcitriol/DP006 resistance in VDR-expressing cells, the VDR was sequenced and 1-a and 24-hydroxylase mRNA expression was assessed. Results: VDR protein was variably expressed in the thyroid cancer cell lines and its presence was not sufficient for decreased viable cell count in response to calcitriol or DP006. The most sensitive cells (TPC1) have an ff FokI VDR polymorphism and the most resistant cells (HTh7 and 8505C) have an FF FokI VDR. This is a unique finding given that the balance of the literature of VDR polymorphisms describes an association of the ff FokI polymorphism with cancer risk and/or decreased VDR transactivation. 1-a and 24-hydroxylase mRNA expression before and after VDR agonist therapy was examined. 1-a-Hydroxylase levels did not change after calcitriol treatment. However, we found that higher baseline 24-hydroxylase levels and/or lower stimulation of 24-hydroxylase levels after calcitriol treatment were associated with relative resistance to calcitriol/DP006. Conclusions: The VDR represents a novel therapeutic target in poorly differentiated thyroid cancer; however, the efficacy of VDR agonist therapy to decrease viable thyroid cancer cell count cannot be predicted solely on the presence of the VDR. The FF FokI VDR genotype and high baseline 24-hydroxylase levels were associated with relative resistance to calcitriol and DP006. Therefore, identifiable markers of sensitivity or resistance to VDR agonist therapy may allow for a personalized use of these agents in poorly differentiated thyroid cancer.
Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.
Undifferentiated (anaplastic) thyroid cancer (ATC) is one of the most aggressive human malignancies and no effective therapy is currently available. We show here that PPARγ levels are elevated in cells derived from ATC. Depletion of PPARγ in HTh74 ATC cells resulted in decreased cell growth, cell cycle arrest and a reduction in pRb and cyclin A and B1 levels. We further showed that both flank and orthotopic thyroid tumors derived from PPARγ-depleted cells grew more slowly than PPARγ-expressing cells. When PPARγ was overexpressed in more differentiated thyroid cancer BCPAP cells which lack PPARγ, there was increased growth and raised pRb and cyclin A and B1 levels. Finally, PPARγ depletion in ATC cells decreased their invasive capacity whereas overexpression in PTC cells increased invasiveness. These data suggest that PPARγ may play a detrimental role in thyroid cancer and that targeting it therapeutically may lead to improved treatment of advanced thyroid cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.