Accelerated aging methods are used to evaluate the oxidative stability of UHMWPE components for total joint replacements. In this study, we traced the evolution of the crystalline morphology during accelerated thermal aging of UHMWPE in air with the intent of explaining previous, counterintuitive heating rate effects. GUR4150HP extruded rod stock material was machined into miniature (0.5 mm thick) specimens that were either gamma irradiated in air or in nitrogen (27 +/- 3 kGy) or left unirradiated (control). Accelerated aging in an air furnace (at 80 degrees C, atmospheric pressure) was performed on half of the test samples at a heating rate of 0.1 degrees C/min and at 5 degrees C/min for the remaining half. Although the initial heating rate, as measured by changes in density, did influence the absolute degradation rate by up to 214%, the heating rate effect did not appear to influence the relative ranking of UHMWPE in terms of its oxidative stability. The heating rate effect is more consistent with a kinetic mechanism of the oxidation process than it is with a previously hypothesized diffusion mechanism. UHMWPE morphology, as characterized using a transmission electron microscope (TEM), demonstrated considerable rearrangement of the crystalline regions as a result of the accelerated aging. The stacking of the lamellae observed after accelerated aging was not consistent with the morphology of naturally aged UHMWPE components. The observed differences in crystalline morphology likely result from the enhanced mobility of the polymer chains due to thermal aging and may be analogous to an annealing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.