Summary: Scanning and transmission electron microscopy and fluorescence light microscopy were employed to characterize the cytotoxic effects of vitamin C (VitC), vitamin K, (VitK,) or a VitC:VK, combination on a human bladder carcinoma cell line (T24) following 1 -h and 2-h vitamin treatment. T24 cells exposed to VitC alone exhibited membranous damage (blebs and endoplasmic extrusions, elongated microvilli). VitK,-treated cells displayed greater membrane damage and enucleation than those treated with VitC as well as cytoplasmic defects characteristic of cytoskeletal damage. VitC:VitK,-treated cells showed exaggerated membrane damage and an enucleation process in which the perikarya separate from the main cytoplasmic cell body by self-excision. Self-excisions continued for perikarya which contained an intact nucleus surrounded by damaged organelles. After further excisions of cytoplasm, the nuclei exhibited nucleolar segregation and chromatin decondensation followed by nuclear karryorhexis and karyolysis. This process of cell death induced by oxidative stress was named autoschizis because it showed both apoptotic and necrotic morphologic characteristics.
Purpose:To evaluate the safety and efficacy of oral Apatone ® (Vitamin C and Vitamin K 3 ) administration in the treatment of prostate cancer in patients who failed standard therapy. Materials and Methods: Seventeen patients with 2 successive rises in PSA after failure of standard local therapy were treated with (5,000 mg of VC and 50 mg of VK 3 each day) for a period of 12 weeks. Prostate Specific Antigen (PSA) levels, PSA velocity (PSAV) and PSA doubling times (PSADT) were calculated before and during treatment at 6 week intervals. Following the initial 12 week trial, 15 of 17 patients opted to continue treatment for an additional period ranging from 6 to 24 months. PSA values were followed for these patients. Results: At the conclusion of the 12 week treatment period, PSAV decreased and PSADT increased in 13 of 17 patients (p ≤ 0.05). There were no dose-limiting adverse effects. Of the 15 patients who continued on Apatone after 12 weeks, only 1 death occurred after 14 months of treatment. Conclusion: Apatone showed promise in delaying biochemical progression in this group of end stage prostate cancer patients.
A human bladder carcinoma cell line RT4 was sham-treated with buffer or treated with ascorbate (VC) alone, menadione alone (VK(3)), or a combination of ascorbate:menadione (VC+VK(3)) for 1, 2, and 4 h. Cytotoxic damage was found to be treatment-dependent in this sequence: VC+VK(3)>VC>VK(3)>sham. The combined treatment induced the greatest oxidative stress, with early tumor cell injury affecting the cytoskeletal architecture and contributing to the self-excisions of pieces of cytoplasm freed from organelles. Additional damage, including a reduction in cell size, organelle alterations, nuclear damage, and nucleic acid degradation as well as compromised lysosome integrity, is caused by reactivation of DNases and the redox cycling of VC or VC+VK(3). In addition, cell death caused by VC+VK(3) treatment as well as by prolonged VC treatment is consistent with cell demise by autoschizis, not apoptosis. This report confirms and complements previous observations about this new mode of tumor cell death. It supports the contention that a combination of VC+VK(3), also named Apatone, could be co-administered as a nontoxic adjuvant with radiation and/or chemotherapies to kill bladder tumor cells and other cancer cells without any supplementary risk or side effects for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.