A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room-temperature to remove top-surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field-emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed. 2. FIELD EMISSION AND END-GROUP THERMAL INSTABILITY LIMITING THE ACCELERATING GRADIENTS IN THE SNS LINAC Field emission in superconducting radio-frequency (SRF) cavities is a well-known limiting factor for operation at high accelerating gradients [1-3]. Beyond certain electric field thresholds, the electrons from the metal surface of the cavity have a non-negligible probability of tunneling out. The field emitted electrons are accelerated by the stored electromagnetic fields in the cavity and subsequently deposit their energy by collision with the cavity radio-frequency (RF) surface leading to vacuum activity, increase of the surface temperature and Bremsstrahlung radiation. If the deposited energy-density is larger than the cooling capacity it can also lead to thermal breakdown of the superconductivity.
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has three operating cryogenic facilities: Central Helium Liquefier (CHL), Cryogenic Test Facility (CTF) and Cryogenic Moderator System (CMS). All three systems use vessels filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system’s cryogenic cold box. However, different versions of carbon are used in different systems. A skid was designed which contains two separate carbon containing vessels for the purpose of comparing the relative efficacy of different versions of carbon filtration media. The design, fabrication, installation, commissioning, and initial results of this dual-bed test skid will be presented. Future testing plans utilizing different filter media will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.