Although B cells produce cytokines it is not known whether B cells can differentiate into effector subsets that secrete polarized arrays of cytokines. We have identified two populations of "effector" B cells (Be1 and Be2) that produce distinct patterns of cytokines depending on the cytokine environment in which the cells were stimulated during their primary encounter with antigen and T cells. These effector B cell subsets subsequently regulate the differentiation of naïve CD4+ T cells to TH1 and TH2 cells through production of polarizing cytokines such as interleukin 4 and interferon gamma. In addition, Be1 and Be2 cells could be identified in animals that were infected with pathogens that preferentially induce a Type 1 and Type 2 immune response. Together these results suggest that, in addition to their well defined role in antibody production, B cells may regulate immune responses to infectious pathogens through their production of cytokines.
Whether memory T lymphocytes are derived directly from effector T cells or via a separately controlled pathway has long been debated. Here we present evidence that, after adoptive transfer, a large fraction of in vitro--derived effector CD4(+) T cells have the potential to become memory T cells and that this transition can occur without further division. This data supports a linear pathway from effector to memory cells and suggests that most properties of memory cells are predetermined during effector generation. We suggest, therefore, that evaluation of vaccine efficacy in the induction of memory CD4(+) T cells should focus on the effector stage.
With age, T-cell generation from the thymus is much reduced, yet a substantial naïve T-cell pool is maintained even in aged animals, suggesting that naïve T cells either persist longer or turn over faster to maintain T-cell homeostasis. We found that with age, naïve CD4 T cells became progressively longer-lived. Their longer lifespan did not depend on recognition of self-peptide/class II. Newly generated naïve T cells derived from aged stem cells had a shorter lifespan, like that of young naïve T cells. Conversely, naïve CD4 T cells derived from middle-aged thymectomized mice were longer-lived in vivo, and their development of functional defects was accelerated. These observations suggest that naïve T cells develop their longer lifespan during their sojourn in the periphery. Increased longevity of naïve CD4 T cells correlated well with reduced expression of proapoptotic molecule Bim. We suggest that the intrinsic increase in longevity helps maintain naïve T-cell homeostasis but facilitates the development of functional defects in mice.aging ͉ Bim ͉ T lymphocytes ͉ apoptosis A ging is accompanied by pleiotropic changes in the immune system that lead to dysfunction of cellular and humoral immune responses (1, 2). The progressive decline in functions is associated with increased susceptibilities to infectious disease, autoimmune disease, and cancer (3-5). Naïve CD4 T cells from aged animals exhibit age-related decreases in Ag responsiveness, characterized by weak proliferative response, lower IL-2 production, and a poor ability to help B cells, leading to reduced specific antibody production (6-8). Similar functional defects are observed when aged naïve CD4 T cells are transferred to young hosts (9, 10), indicating that many of the aged-related defects are intrinsic to the naïve CD4 T cells.When depletion of naïve CD4 T cells with an endogenous superantigen (11), by anti-CD4 Ab given systemically, or by lethal irradiation followed by aged bone marrow (BM) reconstitution, leads to reconstitution of naïve T cells in aged mice, the newly generated CD4 T cells function much like cells from young mice, even though they are derived from aged stem cells (10,12,13). This suggests age-associated loss of function occurs primarily while naïve CD4 T cells persist in periphery. However, no particular mechanism(s) leading to such dysfunction has been identified.The size of the naïve T-cell population is determined by the rate of emigration of new naïve T cells from thymus and by homeostatic turnover of T cells in the periphery. T-cell homeostasis has been assumed to be achieved largely by T-cell receptor (TCR) engagement with self-peptide/MHC (14, 15) and homeostatic survival factors, such as 17). Another important component is cellular lifespan, which has often been considered a cell-intrinsic property. The homeostatic equilibriums that regulate the size of the naïve T-cell pool in aged animals may differ from those in young. Thymic involution starts at puberty and causes an abrupt decline of at least 10-fold in new thymic emig...
Naive CD4 cells from aged mice respond inefficiently to Ag, but the factors that underlie the age-associated defects remain unclear. We have used two approaches to isolate recent thymic emigrants (RTE) in young and aged mice and have compared their capacity to respond to antigenic stimulation ex vivo. An in situ intrathymic CFSE injection labeled developing thymocytes and allowed the identification of RTE in secondary lymphoid tissues. Analysis of CFSE-labeled RTE and control unlabeled naive CD4 cells indicated that cells from aged mice were defective in their ability to increase intracellular Ca2+ concentration following TCR cross-linking. Aged naive and RTE CD4 also secreted less IL-2 and proliferated less than that of comparable young CD4 populations. Defects in effector generation in aged RTE were overcome by the addition of IL-2 to cultures. RTE from both polyclonal and TCR transgenic mice were compromised, indicating that defects were independent of TCR specificity. In the second model, the cotransfer of congenic marker-labeled young and aged BM cells into young and aged syngeneic hosts revealed that hyporesponsiveness in aged RTE was caused by a combination of defects intrinsic to CD4 progenitors and defects induced by the aged environment. Depletion of peripheral CD4 cells in aged mice led to production of new RTE that were not defective. The results of this study suggest that defects induced by environmental and lineage intrinsic factors act together to reduce responses to Ag in aged naive CD4 cells and that these defects can be overcome in aged CD4 cells produced during recovery from lymphopenia.
The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion SARS-CoV-2 Spike (S), S1 and RBD. These immunogens induce robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A Spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID 50 > 10,000) following a single immunization, while RBD-Ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations, and also show durable and potent neutralization against circulating VoC. Passive transfer of IgG purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2 blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.