The immune response of naive CD4 T cells to influenza virus is initiated in the draining lymph nodes and spleen, and only after effectors are generated do antigen-specific cells migrate to the lung which is the site of infection. The effector cells generated in secondary organs appear as multiple subsets which are a heterogeneous continuum of cells in terms of number of cell divisions, phenotype and function. The effector cells that migrate to the lung constitute the more differentiated of the total responding population, characterized by many cell divisions, loss of CD62L, down-regulation of CCR7, stable expression of CD44 and CD49d, and transient expression of CCR5 and CD25. These cells also secrete high levels of interferon γ and reduced levels of interleukin 2 relative to those in the secondary lymphoid organs. The response declines rapidly in parallel with viral clearance, but a spectrum of resting cell subsets reflecting the pattern at the peak of response is retained, suggesting that heterogeneous effector populations may give rise to corresponding memory populations. These results reveal a complex response, not an all-or-none one, which results in multiple effector phenotypes and implies that effector cells and the memory cells derived from them can display a broad spectrum of functional potentials.
The factors required for the generation of memory CD4 T cells remain unclear, and whether there is a continuing requirement for antigen stimulation is critical to design of vaccine strategies. CD4 effectors generated in vitro from naïve CD4 T cells of mice efficiently gave rise to small resting memory cells after transfer to class II-deficient hosts, indicating no requirement for further antigen or class II recognition.
We examined the expression and influence of IL-10 during influenza infection. We found that IL-10 does not impact sublethal infection, heterosubtypic immunity, or the maintenance of long-lived influenza Ag depots. However, IL-10-deficient mice display dramatically increased survival compared with wild-type mice when challenged with lethal doses of virus, correlating with increased expression of several Th17-associated cytokines in the lungs of IL-10-deficient mice during the peak of infection, but not with unchecked inflammation or with increased cellular responses. Foxp3− CD4 T cell effectors at the site of infection represent the most abundant source of IL-10 in wild-type mice during high-dose influenza infection, and the majority of these cells coproduce IFN-γ. Finally, compared with predominant Th1 responses in wild-type mice, virus-specific T cell responses in the absence of IL-10 display a strong Th17 component in addition to a strong Th1 response and we show that Th17-polarized CD4 T cell effectors can protect naive mice against an otherwise lethal influenza challenge and utilize unique mechanisms to do so. Our results show that IL-10 expression inhibits development of Th17 responses during influenza infection and that this is correlated with compromised protection during high-dose primary, but not secondary, challenge.
After transfer to adoptive hosts, in vitro–generated CD4 effectors can become long-lived memory cells, but the factors regulating this transition are unknown. We find that low doses of interleukin (IL) 7 enhance survival of effectors in vitro without driving their division. When in vitro–generated effectors are transferred to normal intact adoptive hosts, they survive and rapidly become small resting cells with a memory phenotype. CD4 effectors generated from wild-type versus IL-7 receptor−/− mice were transferred to adoptive hosts, including intact mice and those deficient in IL-7. In each case, the response to IL-7 was critical for good recovery of donor cells after 5–7 d. Recovery was also IL-7–dependent in Class II hosts where division was minimal. Blocking antibodies to IL-7 dramatically decreased short-term recovery of transferred effectors in vivo without affecting their division. These data indicate that IL-7 plays a critical role in promoting memory CD4 T cell generation by providing survival signals, which allow effectors to successfully become resting memory cells.
We have concentrated here on the lymphokines which might serve to regulate the different pathways of precursor development. We suggest that, as a result of antigenic stimulation, specific precursor cells both proliferate and become committed to develop into either an effector cell, a memory cell or an anergized cell. Anergy has not been dealt with in this review, but it is likely to be one of the options available. The development of an effector population takes 4-7 d (quite analogous to the time it takes for CTLp to become CTL and for resting B to become Ab-forming cells). The effector populations are large, generally IL-2R-positive cells. These cells have upregulated many adhesion molecule systems [e.g., Pgp-1, LFA-1 and ICAM-1 (Swain unpublished)], but downregulated the Mel-14 homing receptor. Effectors are ready to respond to APC such as specific B cells with a rapid synthesis and secretion of lymphokines. The effector population is then quickly downregulated, both by the turn off of lymphokine synthesis/secretion and possibly by its own suicide. This kind of pattern makes teleological sense since the cells making such high titers of lymphokines could have many potent pleitropic effects. It also seems to be the strategy employed in the generation of other terminally differentiated effectors (such as CTL and plasma cells). The requirement for restimulation and the requirement for direct and perhaps prolonged contact between the helper effector and the APC-B cell can be expected to help ensure that these lymphokines are localized (reviewed in Swain & Dutton 1987, Swain & Croft 1990) and effectively delivered to specific responding cells. We postulate that at the same time, or perhaps subsequent to this, another set of signals drives precursors to generate prememory cells. Our studies suggest these emerging memory cells may be phenotypically unique and we postulate that they are specialized to become a "long-lived" population of memory cells that will persist indefinitely as a protective population of increased frequency for the antigen encountered and which is also able to respond more rapidly and effectively. The greater effectiveness of the memory response would thus be due to dramatically increased frequency, to characteristic and stable changes in adhesion molecule expression and to the fact that, in addition to IL-2, resting memory cells also secrete at least low titers of IL-3, IL-4, IFN-gamma and other lymphokines upon initial restimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.