The immune response of naive CD4 T cells to influenza virus is initiated in the draining lymph nodes and spleen, and only after effectors are generated do antigen-specific cells migrate to the lung which is the site of infection. The effector cells generated in secondary organs appear as multiple subsets which are a heterogeneous continuum of cells in terms of number of cell divisions, phenotype and function. The effector cells that migrate to the lung constitute the more differentiated of the total responding population, characterized by many cell divisions, loss of CD62L, down-regulation of CCR7, stable expression of CD44 and CD49d, and transient expression of CCR5 and CD25. These cells also secrete high levels of interferon γ and reduced levels of interleukin 2 relative to those in the secondary lymphoid organs. The response declines rapidly in parallel with viral clearance, but a spectrum of resting cell subsets reflecting the pattern at the peak of response is retained, suggesting that heterogeneous effector populations may give rise to corresponding memory populations. These results reveal a complex response, not an all-or-none one, which results in multiple effector phenotypes and implies that effector cells and the memory cells derived from them can display a broad spectrum of functional potentials.
Whether memory T lymphocytes are derived directly from effector T cells or via a separately controlled pathway has long been debated. Here we present evidence that, after adoptive transfer, a large fraction of in vitro--derived effector CD4(+) T cells have the potential to become memory T cells and that this transition can occur without further division. This data supports a linear pathway from effector to memory cells and suggests that most properties of memory cells are predetermined during effector generation. We suggest, therefore, that evaluation of vaccine efficacy in the induction of memory CD4(+) T cells should focus on the effector stage.
SummaryWe have outlined the carefully orchestrated process of CD4 + T-cell differentiation from naïve to effector and from effector to memory cells with a focus on how these processes can be studied in vivo in responses to pathogen infection. We emphasize that the regulatory factors that determine the quality and quantity of the effector and memory cells generated include (i) the antigen dose during the initial T-cell interaction with antigen-presenting cells; (ii) the dose and duration of repeated interactions; and (iii) the milieu of inflammatory and growth cytokines that responding CD4 + T cells encounter. We suggest that heterogeneity in these regulatory factors leads to the generation of a spectrum of effectors with different functional attributes. Furthermore, we suggest that it is the presence of effectors at different stages along a pathway of progressive linear differentiation that leads to a related spectrum of memory cells. Our studies particularly highlight the multi-faceted roles of CD4 + effector and memory T cells in protective responses to influenza infection and support the concept that efficient priming of CD4 + T cells that react to shared influenza proteins could contribute greatly to vaccine strategies for influenza. Overview and historyOver the past decade, others and we have concluded that naïve precursor T cells must undergo many steps of division and differentiation before they acquire the effector functions necessary for their many regulatory activities (1). One of these activities is 'help' for B cells, which promotes B-cell isotype switching, somatic mutation, and differentiation in germinal centers to plasma cells and memory cells (2-4). Another key regulatory activity carried out by CD4 + T cells involves help for naïve CD8 + T cells to promote their optimum differentiation into cytotoxic effectors and memory cells and to support their maintenance (5-7). In addition, there are a host of other regulatory effects of CD4 + effectors on macrophages as well as other antigenpresenting cells (APCs). These CD4 + T-cell functions are mediated by surface coreceptors on the effector cells, including CD40L, CD28, cytotoxic T-lymphocyte antigen-4, etc., that interact with receptors on B cells, dendritic cells, macrophages, or other APCs, and by potent cytokines secreted by the CD4 + effectors upon recognition of antigen on APCs.CD4 + T-cell effectors represent a collection of distinct subsets characterized in part by their abilities to produce different patterns of cytokines. The two best characterized subsets are designated T-helper 1 (Th1), producing interferon-γ (IFN-γ), and Th2, producing interleukin-4 (IL-4), IL-5, and IL-13 as 'signature' cytokines. Recently, evidence has accumulated for a third . Most probably the APCs that stimulate the naïve CD4 + T cells are also the initial source of cytokines that imprint these subsets in situ (11). It is also increasingly accepted that the polarizing cytokines secreted by the APCs are dictated by the context of the antigen, be it from a pathogen or...
Human thymus contains major dendritic cell (DC) subsets, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). We previously showed that mDCs, educated by thymic stromal lymphopoietin (TSLP) produced by the epithelial cells of the Hassall’s corpuscles, induced differentiation of CD4+CD25− thymocytes into Forkhead Box P3+ (FOXP3+) regulatory T cells (TR) within the medulla of human thymus. In this study, we show that pDCs expressed the TSLP receptor and IL-7 receptor a complexes upon activation and became responsive to TSLP. TSLP-activated human pDCs secrete macrophage-derived chemokine CCL-22 and thymus- and activation-regulated chemokine CCL-17 but not Th1- or Th2-polarizing cytokines. TSLP-activated pDCs induced the generation of FOXP3+ TR from CD4+CD8−CD25− thymocytes, which could be strongly inhibited by Th1-polarizing cytokine IL-12 or Th2-polarizing cytokine IL-4. Interestingly, the FOXP3+ TR induced by the TSLP-pDCs expressed more IL-10 but less TGF-b than that induced by the TSLP-mDCs. These data suggest that TSLP expressed by thymic epithelial cells can activate mDCs and pDCs to positively select the FOXP3+ TR with different cytokine production potential in human thymus. The inability of TSLP to induce DC maturation without producing Th1- or Th2-polarizing cytokines may provide a thymic niche for TR development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.