Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering.
We examine quantum interference effects due to absorption and emission from multiple atoms coupled to a waveguide and highlight the modifications they entail in regards to single-photon transport properties. A prominent upshot of these interference phenomena is the resonant suppression of the reflection amplitude, which leads to the observation of multiple Fano minima in the reflection spectrum. Such minima determine the points at which transparency is induced in the system. By taking recourse to the real-space Hamiltonian framework, we calculate analytically the reflectivity and transmissivity for a one-dimensional waveguide that evanescently couples to a chain of equally spaced quantum emitters. The inter-emitter spacing relative to the wavelength of the propagating photon, leading to a waveguide-mediated "phase-coupling" between the atoms, is found to fundamentally affect the existence of Fano minima. For a chain of N atoms, the number of minima can be at most N − 1. However, suitable choices of the phase can suppress the discernibility of the full range of roots in the reflection spectrum. A principal observation for the case of multiple emitters is the emergence of super-Gaussian characteristics close to zero-detuning and consequently, a plateau-shaped broadband spectrum in the region of high reflectivity. For a large chain size, the plateau gets transformed into a flat-topped quasi-rectangular profile in the frequency domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.