The electrochemical nitrogen reduction reaction (NRR) process usually suffers extremely low Faradaic efficiency and ammonia yields due to sluggish NN dissociation. Herein, single‐atomic ruthenium modified Mo2CTX MXene nanosheets as an efficient electrocatalyst for nitrogen fixation at ambient conditions are reported. The catalyst achieves a Faradaic efficiency of 25.77% and ammonia yield rate of 40.57 µg h−1 mg−1 at ‐0.3 V versus the reversible hydrogen electrode in 0.5 m K2SO4 solution. Operando X‐ray absorption spectroscopy studies and density functional theory calculations reveal that single‐atomic Ru anchored on MXene nanosheets act as important electron back‐donation centers for N2 activation, which can not only promote nitrogen adsorption and activation behavior of the catalyst, but also lower the thermodynamic energy barrier of the first hydrogenation step. This work opens up a promising avenue to manipulate catalytic performance of electrocatalysts utilizing an atomic‐level engineering strategy.
Hydrogen production from electrochemical water splitting is a promising route to pursue clean and sustainable energy sources. Here, a three-dimensional nanoporous Cu−Ru alloy is prepared as a high-performance platinum-free catalyst for hydrogen evolution reaction (HER) by a dealloying process. Significantly, the optimized nanoporous alloy Cu 53 Ru 47 exhibits remarkable catalytic activity for HER with nearly zero onset overpotential and ultralow Tafel slopes (∼30 and ∼35 mV dec −1 ) in both alkaline and neutral electrolytes, achieving a catalytic current density of 10 mA cm −2 at low overpotentials of ∼15 and ∼41 mV, respectively. Operando Xray absorption spectroscopy experiments, in conjunction with DFT simulations, reveal that the incorporation of Ru atoms into the Cu matrix not only accelerates the reaction step rates of water adsorption and activation but also optimizes the hydrogen bonding energy on Cu and Ru active sites, improving the intrinsic activity for HER.
semiconductor nanorods are important for numerous applications ranging from optics and electronics to biology, yet the direct synthesis of high-quality metal halide perovskite nanorods remains a challenge. Here, we develop an intermediate monomer reservoir synthetic strategy to realize the controllable growth of uniform and low-defect CsPbBr 3 perovskite nanorods. Intermediates composed of CsPb 2 Br 5 and Cs 3 In 2 Br 9 are obtained through the substitution of Pb 2+ with In 3+ cations in the template of CsPbBr 3 nanocubes and act as a precursor reservoir to gradually release monomers, ensuring both the slow growth rate and low defects of nanorods. We have used branched tris(diethylamino)phosphine as a ligand, which not only has unequal binding energies with different crystal faces to promote the orientation growth but also provides strong steric hindrance to shield the nanorods in solution. Because of minor amount of defects and an effective ligand passivation, in addition to significantly enhanced stability, the perovskite nanorods show a high photoluminescence quantum yield of up to 90% and exhibit a net mode gain of 980 cm −1 , the latter being a record value among all the perovskite materials. An extremely low amplified spontaneous emission threshold of 7.5 μJ cm −2 is obtained under excitation by a nanosecond laser, which is comparable to that obtained using femtosecond lasers in other recent studies.
Maximizing the catalytic activity of single-atom catalysts is vital for the application of single-atom catalysts in industrial water-alkali electrolyzers, yet the modulation of the catalytic properties of single-atom catalysts remains challenging. Here, we construct strain-tunable sulphur vacancies around single-atom Ru sites for accelerating the alkaline hydrogen evolution reaction of single-atom Ru sites based on a nanoporous MoS2-based Ru single-atom catalyst. By altering the strain of this system, the synergistic effect between sulphur vacancies and Ru sites is amplified, thus changing the catalytic behavior of active sites, namely, the increased reactant density in strained sulphur vacancies and the accelerated hydrogen evolution reaction process on Ru sites. The resulting catalyst delivers an overpotential of 30 mV at a current density of 10 mA cm−2, a Tafel slope of 31 mV dec−1, and a long catalytic lifetime. This work provides an effective strategy to improve the activities of single-atom modified transition metal dichalcogenides catalysts by precise strain engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.