Conducting polymers (CPs) are redox active materials with tunable electronic and physical properties. The charge of the CP backbone can be manipulated through redox processes, with accompanied movement of ions into and out of the polymer to maintain electrostatic neutrality. CPs with defined micro- or nanostructures have greatly enhanced surface areas, compared to conventionally prepared CPs. The resulting high surface area interface between polymer and liquid media facilities ion exchange and can lead to larger and more rapid responses to redox cycling. CP systems are maturing as platforms for electrically tunable drug delivery. CPs with defined micro- or nanostructures offer the ability to increase the amount of drug that can be delivered whilst enabling systems to be finely tuned to control the extent and rate of drug release. In this review, fabrication approaches to achieve CPs with micro- or nanostructure are outlined followed by a detailed review and discussion of recent advances in the application of the materials for drug delivery.
Parkinson's disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR-α agonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 µg/1 µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100 mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF-α, and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR-α agonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment.
Unlike conventional controlled drug delivery systems where drug is released at a constant pre-programmed rate, drug release from conducting polymers (CPs) can be controlled through electrical stimuli and adjusted based on the patient's needs. However, owing to their low drug loading capacity and limited electrical responsiveness CP systems cannot currently be applied for systemic drug delivery or to treat chronic disease. To overcome that obstacle one approach is to fabricate porous CP structures. In this work, polypyrrole (PPy) was used owing to its electrical responsiveness and biocompatibility. Liquid crystals were used as a template through which PPy was grown. Dexamethasone phosphate was loaded as a dopant into PPy during polymerisation and its release was quantified by HPLC after the removal of liquid crystal; release could be modified by electrical stimulus. This system has potential applications in conditions where required drug dosing changes with time, such as in age-related macular degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.