Parkinson's disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR-α agonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 µg/1 µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100 mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF-α, and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR-α agonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment.
Parkinson's disease (PD) is associated with higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of GW0742, a PPAR-β/δ agonist in rat model of cognitive impairment associated with PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) (100 µg/1 µl/side) produced significant cognitive dysfunctions. PPAR-β/δ agonist GW0742 at a dose of 30 and 100 µg/kg showed significant improvement in cognitive impairments caused by MPTP in rat model of PD as evident from passive avoidance and Morris water maze test. MPTP-induced massive oxidative damage and DNA fragmentation was ameliorated by GW0742 treatment as observed after MDA and GSH estimation and TUNEL assay. Tyrosine hydroxylase positive neurons were decreased by 25% of normal control in MPTP group and GW0742 treatment restored tyrosine hydroxylase levels showing neuroprotective nature. Further, we performed physiologically based pharmacokinetic (PBPK) modeling study using GastroPlus to characterize the kinetics of GW0742 in the brain. The predicted amounts of GW0742 in brain suggest that it has the ability to cross the blood brain barrier. This study implicates the involvement of PPAR-β/δ in PD induced cognitive impairment.
Natural vaccination against pathogens are known to be achieved by herd-immunity i.e. infected human host provide immunity to the community by spreading the pathogen. Whether, infected human hosts transmit vesicle packed aerosols of pathogen’s antigen for natural vaccination of the community has not yet been considered. We have explored a traditional healing method of aerosol-inoculation against small pox and tuberculosis in the Sualkuchi-Hajo cultural complex of Kamarupa, an ancient Indian region known for tantra-based healing and spirituality. In the aerosol-inoculation method against TB, selected persons with TB (later identified as smear negative TB subject) are encouraged to spread good nigudah in the community by Kirtan chanting; the good Nigudah are thought to be present within bad-nigudah or invisible krimis (tiny flesh eating living being mentioned in ancient India’s medicinal text Caraka Samhita and Atharva Veda). A 15-years of contact TB investigation study, as well as laboratory study of aerosol obtained from smear negative PTB (SN-PTB) subjects led to the identification of good Nigudah as extracellular vesicles (EVs) filled with Mtb-antigen ESAT-6. We then developed a mouse model of aerosol-inoculation using SN-PTB subject derived aerosol EVs, and identified Mtb infected mesenchymal stem cells (MSCs) of the lung as the putative source of the ESAT-6+ EVs. These Mtb infected MSCs reprogram to altruistic stem cell (ASC) phenotype, which then secrete ESAT-6+ EVs to the aerosols; healthy mice receiving the aerosol develop Mtb specific herd immunity. These results expedite our ongoing work on the innate defense mechanism of ASCs against pathogen, and provide a novel mechanism of natural vaccination, where the host extracts appropriate antigens from a pathogen, and then spread it in the community via aerosols.
Background:
PPAR gamma co-activator 1α (PGC-1α) is known as the master regulator of mitochondrial biogenesis. It is also a co-activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and plays a role in preventing mitochondrial dysfunction in several neurodegenerative disorders, including Parkinson’s disease (PD). Depletion in the levels of these proteins has been linked to oxidative stress, inflammation, and DNA damage, all of which are known to contribute to the pathogenesis of PD.
Objective:
In the present study, combination therapy of PPARγ agonist (GW1929) and PGC-1α activator (alpha-lipoic acid) was employed to ameliorate cognitive deficits, oxidative stress, and inflammation associated with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD.
Results:
Our study showed that MPTP-induced PD rats exhibited an increase in oxidative stress and inflammation, leading to cognitive deficits. Furthermore, MPTP-induced PD rats also exhibited reduced mitochondrial biogenesis in comparison to control and sham animals. Intraperitoneal administration of GW 1929 and alpha-lipoic acid in doses lower than those earlier reported individually in literature led to an improvement in the cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and inflammation. In addition, an increase in mitochondrial biogenesis was also observed after the combination of these pharmacological agents.
Conclusion:
Our results provide a rationale for the development of agents targeting PPARγ and PGC-1α as potent therapeutics for the treatment of neurological diseases like PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.