Despite immense advances in the treatment strategies, the effective treatment of patients suffering from neuropathic pain remains challenging. Saikosaponin a possesses anti-inflammatory activity. However, the role of saikosaponin a in neuropathic pain is still unclear. Therefore, the objective of this study was to investigate the effects of saikosaponin a on neuropathic pain. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After CCI, rats were administered saikosaponin a (6.25, 12.50 and 25.00 mg/kg intraperitoneal, once daily) for 14 days. Mechanical withdrawal threshold and thermal withdrawal latency were assessed before surgery and on days 1, 3, 7, and 14 after CCI. Our results showed that CCI significantly decreased mechanical withdrawal threshold and thermal withdrawal latency on days 1, 3, 7 and 14, as compared with sham groups, however, saikosaponin a reversed this effects. In addition, saikosaponin a inhibited CCI-induced the levels of TNF-α, IL-1β, IL-2 in spinal cord. Western blot analysis demonstrated that saikosaponin a reduced the elevated expression of p-p38 mitogen-activated protein kinase (MAPK) and NF-κB in the spinal cord induced by CCI. These results suggest that saikosaponin a could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38 MAPK and NF-κB signaling pathways in spinal cord.
The effects of Staphylococcal enterotoxin B (SEB) on regulation of immune response have been recognized; whether SEB can enhance the effects of immunotherapy on glioma remains to be investigated. This study tests a hypothesis that administration with SEB enhances the effects of specific immunotherapy on glioma growth in mice. In this study, a glioma-bearing mouse model was developed by adoptive transfer with GL261 cells (a mouse glioma cell line). The mice were treated with the GL261 cell extracts (used as an Ag) with or without administration of SEB. We observed that treating glioma-bearing mice with the glioma Ag and SEB induced glioma-specific Th9 cells in both glioma tissue and the spleen. Treating CD4+ CD25− T cells with SEB increased p300 phosphorylation, histone H3K4 acetylation at the interleukin (IL)-9 promoter locus, and increased the IL-9 transcriptional factor binding to the IL-9 promoter. Treating CD4+ CD25− T cells with both SEB and glioma Ag induced glioma-specific Th9 cells. The glioma-specific Th9 cells induced glioma cell apoptosis in the culture. Treating the glioma-bearing mice with SEB and glioma Ag significantly inhibited the glioma growth. In conclusion, SEB plus glioma Ag immunotherapy inhibits the experimental glioma growth, which may be a novel therapeutic remedy for the treatment of glioma.
Quinone Oxidoreductase 1 gene (NQO1) polymorphism is associated with the risk of cardiovascular disease. This study was designed to investigate the relationship between NQO1 gene polymorphism and ischemic stroke susceptibility in Chinese Han nationality. Patients and Methods: One hundred and forty-one patients diagnosed with ischemic stroke and 139 matched control groups were recruited in this study. The polymorphism distribution of rsl800566 locus and rs10517 locus of NQO1 gene was genotyped via TaqMan assay, and the concentration of Oxidized low-density lipoprotein (ox-LDL) in the blood of the subjects was detected by enzyme linked immunosorbent assay (ELISA). The relationship between the polymorphism distribution and the susceptibility to ischemic stroke was evaluated. Results:The frequency distribution of the three genotypes of NQO1 rs1800566 between the case group and the control group was statistically significant, and cases carrying CT and TT genotype were less likely to suffer from ischemic stroke. Compared with individuals carrying T allele, C allele carriers have higher risk of ischemic stroke. However, there was no significant difference in frequency distribution among the three genotypes of NQO1 rs10517 between controls and patients. Conclusion:The NQO1 rs1800566 C allele may be a novel marker associated with ischemic stroke susceptibility in Chinese Han population. Polymorphism of rsl800566 locus in NQO1 gene may be protective against ischemic stroke risk.
Background: lncRNA MIR17HG was upregulated in glioma, and participated in promoting proliferation, migration and invasion of glioma. However, the role of MIR17HG polymorphisms in the occurrence and prognosis of glioma is still unclear.Methods: In the study, 592 glioma patients and 502 control subjects were recruited. Agena MassARRAY platform was used to detect the genotype of MIR17HG polymorphisms. Logistic regression analysis was used to evaluate the relationship between MIR17HG single nucleotide polymorphisms (SNPs) and glioma risk by odds ratio (OR) and 95% confidence intervals (CIs). Kaplan–Meier curves, Cox hazards models were performed for assessing the role of these SNPs in glioma prognosis by hazard ratios (HR) and 95% CIs.Results: We found that rs7318578 (OR = 2.25, p = 3.18´10-5) was significantly associated with glioma susceptibility in the overall participants. In the subgroup with age < 40 years, rs17735387 (OR = 1.53, p = 9.05´10-3) and rs7336610 (OR = 1.35, p = 0.016) were related to the higher glioma susceptibility. More importantly, rs17735387 (HR = 0.82, log-rank p = 0.026) were associated with the longer survival of glioma patients. The GA genotype of rs17735387 had a better overall survival (HR = 0.75, log-rank p = 0.013) and progression free survival (HR = 0.73, log-rank p = 0.032) in patients with Ⅰ-Ⅱ glioma. We also found that rs72640334 was related to the poor prognosis (HR = 1.49, Log-rank p = 0.035) in female patients. In the subgroup of patients with age ³ 40 years, rs17735387 was associated with a better prognosis (HR = 0.036, Log-rank p = 0.002).Conclusion: Our study firstly reported that MIR17HG rs7318578 was a risk factor for glioma susceptibility and rs17735387 was associated with the longer survival of glioma among Chinese Han population, which might help to enhance the understanding of MIR17HG gene in gliomagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.