This paper presents a reconfigurable radio frequency to direct current (RF-DC) converter operating at 902 MHz frequency designed to efficiently harvest RF signals and convert into useable DC voltages for RF energy harvesting applications. The proposed scheme employs a dual-path, a series (lowpower) path and a parallel (high-power) path, to maintain high power conversion efficiency (PCE) over wide input power range. The dual-path is composed of two identical rectifier blocks utilizing internal threshold voltage cancellation (IVC) technique to efficiently compensate the threshold voltage of the transistors used as rectifying devices. An adaptive control circuit (ACC) consisting of a comparator, an inverter and three switches is used in the proposed scheme. The ACC activates the series path or the parallel path to maximize the harvested power based on the input power range. The proposed scheme is designed and fabricated in a 180 nm complementary metal-oxide semiconductor (CMOS) technology. The measurement results show that PCE of the proposed circuit is above 20% from −18 dBm to −5 dBm, maintaining 13-dB input power range with peak PCE of 33% at −8 dBm for 200 k load resistance. The proposed circuit demonstrates −20.2 dBm sensitivity across 1 M load resistance while producing 1 V output DC voltage. INDEX TERMS CMOS technology, dual path, power conversion efficiency, reconfigurable, RF-DC power converter, RF energy harvesting.
This paper presents an energy-efficient low power 10-b 8-MS/s asynchronous successive approximation register (SAR) analog-to-digital (ADC) converter. An inverted common-mode charge recovery technique is proposed to reduce the switching energy and to improve the linearity of the digital-to-analog converter (DAC). The proposed switching technique consumes only 149 CVREF2 switching energy for the 10-bit case. A rail-to-rail dynamic latch comparator is implemented with adaptive power control for better power efficiency. Additionally, to optimize the power consumption and performance of the logic part, a modified asynchronous type SAR control logic with digitally controllable delay cells is adopted. An on-chip reference voltage generator is also designed with an ADC core for practical use. The structure is realized using 55-nm complementary metal–oxide–semiconductor (CMOS) process technology. The proposed architecture achieves an effective number of bits (ENOB) of 9.56 bits and a signal-to-noise and distortion ratio (SNDR) level of 59.3 dB with a sampling rate of 8 MS/s at measurement level. The whole architecture consumes only 572 µW power when a power supply of 1 V is applied.
An energy efficient, low-power 10-bit asynchronous successive approximation register (SAR) analog-to-digital (ADC) converter with the sampling frequency of 8 MS/s is presented for IEEE 802.15.1 IoT sensor based applications. An improved common mode charge redistribution algorithm is proposed for binary weighted SAR ADC. The proposed method uses available common mode voltage (V CM) level for SAR ADC conversion, and this method reduces the switching power by more than 12% without any additional DAC driver as compared to merged capacitor switching (MCS). Mathematical analysis of the proposed switching scheme results in the lower or equal power consumption for every digital code as compared to MCS. A two stage dynamic latched comparator with adaptive power control (APC) technique is used to optimize the overall efficiency. Furthermore, to minimize the digital part power consumption, a modified asynchronous SAR logic with digitally controlled delay cells is proposed. High efficiency with low power consumption makes it suitable for low power devices especially for IEEE 802.15.1 IoT sensor based applications. The proposed prototype is implemented using 1P6M 55 nm complementary metal-oxide-semiconductor (CMOS) technology. The measurement results that the proposed circuit achieves are 9.3 effective number of bits (ENOB) with signal-to-noise and distortion ratio (SNDR) of 58.05 dB at a sampling rate of 8 MS/s. The power consumption of SAR ADC is 45 µW when operated at 1 V power supply. INDEX TERMS Adaptive power control (APC), asynchronous logic, Bluetooth low energy (BLE), capacitive DAC (CDAC), IEEE 802.15.1 IoT sensors, low power consumption, successive approximation register (SAR) ADC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.