Objectives:The objective of this study was to evaluate the efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation in different energy outputs versus ultrasonic in gutta-percha removal during the endodontic retreatment.Materials and Methods:A total of 21 extracted human lower premolars were divided into three groups (n = 7). Following the standardized preparation of the root canals with Wave One Rotary system and obturation with gutta-percha: Group I was treated with ultrasonic, Group II by Er:YAG laser with 40 mJ/Pulse, and Group III by Er:YAG laser with 50 mJ/Pulse for the removal of gutta-percha from the canals. Two extra teeth were treated by Er:YAG laser with 135 mJ/Pulse as control group. For all groups, time for gutta-percha removal was recorded. Samples were then splited into two halves and tested by scanning electron microscope and stereomicroscopic evaluation under different magnification power to observe the efficacy of each method used in the removal of gutta-percha.Results:Statistical analysis of Kruskal–Wallis suggested that there are significant difference between the groups in relation to removal time (P < 0.05) and 2 × 2 Mann–Whitney U-test among the groups revealed that there is no significant difference between 40 and 50 mJ laser outputs (P > 0.05), but ultrasonic versus 40 and/or 50 mJ laser outputs were significantly different (P < 0.05).Conclusions:Er:YAG laser beam was not so efficient when compared to ultrasonic to reach the deeper parts of the canals as it was asserted, thermal side effects and burning damages were observed on the root canal dentinal walls. Moreover, the delivery system was not flexible enough to compensate the curvature of the canal system even though we used more straight canals as the sample ones as well as more time-consuming than the ultrasonic and more clinical time, rendering it to be less efficient in the removal of the obturation material during endodontic retreatment procedures.
Currently available anti-erosive agents only provide partial protection, emphasizing the need to enhance their performance. By characterizing erosive enamel wear at the nanoscale, the aim of this in vitro study was to assess the anti-erosive effects of SnF2 and CPP-ACP both individually and synergistically. Erosion depths were assessed longitudinally on 40 polished human enamel specimens after 1, 5, and 10 erosion cycles. Each cycle comprised one-min erosion in citric acid (pH 3.0) and one-min treatment in whole saliva (control group) or a slurry of one of the three anti-erosive pastes (10% CPP-ACP; 0.45% SnF2 (1100 ppm F); or SnF2/CPP-ACP (10% CPP-ACP + 0.45% SnF2)) (n = 10 per group). Scratch depths were assessed longitudinally in separate experiments using a similar protocol after 1, 5, and 10 cycles. Compared with the control groups, all slurries reduced erosion depths after 1 cycle (p ≤ 0.004) and scratch depths after 5 cycles (p ≤ 0.012). The order of anti-erosive potential was SnF2/CPP-ACP > SnF2 > CPP-ACP > control for erosion depth analysis, and SnF2/CPP-ACP > (SnF2 = CPP-ACP) > control for scratch depth analysis. These data provide ‘proof of concept’ evidence that SnF2/CPP-ACP has superior anti-erosive potential compared to SnF2 or CPP-ACP alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.