This is the first study to our knowledge to demonstrate the photodynamic effect of AO in glioblastoma cells. These data support the need for further studies to characterize and evaluate whether this striking cytotoxic effect can be achieved in vivo. The combination of AO and exposure to white unfiltered light-emitting diode light may have potential future applications in management of glioblastoma.
Intraoperative neurosurgical histopathologic diagnoses rely on evaluation of rapid tissue preparations such as frozen sections and smears with conventional light microscopy. Although useful, these techniques are time consuming and therefore cannot provide real-time intraoperative feedback. In vivo molecular imaging techniques are emerging as novel methods for generating real-time diagnostic histopathologic images of tumors and their surrounding tissues. These imaging techniques rely on contrast generated by exogenous fluorescent dyes, autofluorescence of endogenous molecules, fluorescence decay of excited molecules, or light scattering. Large molecular imaging instruments are being miniaturized for clinical in vivo use. This review discusses pertinent imaging systems that have been developed for neurosurgical use and imaging techniques currently under development for neurosurgical molecular imaging.
Background: Microscopic delineation and clearance of tumor cells at neurosurgical excision margins potentially reduce tumor recurrence and increase patient survival. Probe-based in vivo fluorescence microscopy technologies are promising for neurosurgical in vivo microscopy.
Objective:We sought to demonstrate a flexible fiberoptic epifluorescence microscope capable of enhanced architectural and cytological imaging for in vivo microscopy during neurosurgical procedures.Methods: Eighteen specimens were procured from neurosurgical procedures. These specimens were stained with acridine orange and imaged with a 3D-printed epifluorescent microscope that incorporates a flexible fiberoptic probe. Still images and video sequence frames were processed using frame alignment, signal projection, and pseudo-coloring, resulting in resolution enhancement and an increased field of view.Results: Images produced displayed good nuclear contrast and architectural detail. Grade 1 meningiomas demonstrated 3D chords and whorls. Low-grade meningothelial nuclei showed streaming and displayed regularity in size, shape, and distribution. Oligodendrogliomas showed regular round nuclei and a variably staining background. Glioblastomas showed high degrees of nuclear pleomorphism and disarray. Mitoses, vascular proliferation, and necrosis were evident.
Conclusions:We demonstrate the utility of a 3D-printed, flexible probe microscope for highresolution microscopic imaging with increased architectural detail. Enhanced in vivo imaging using this device may improve our ability to detect and decrease microscopic tumor burden at excision margins during neurosurgical procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.