In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD). The diagnosis of ASD requires behavioral observation and standardized testing completed by highly trained experts. Early intervention for ASD can begin as early as 1–2 years of age, but ASD diagnoses are not typically made until ages 2–5 years, thus delaying the start of intervention. There is an urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using physiological recordings has focused on brain-based biomarkers of ASD, this study investigated the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3–6-month-old infants. We recorded the heart activity of infants at typical and elevated familial likelihood for ASD during naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted. Then we evaluated the effectiveness of multiple machine learning classifiers for classifying ASD likelihood. Our findings support our hypothesis that infant ECG signals contain important information about ASD familial likelihood. Amongthe various machine learning algorithms tested, KNN performed best according to sensitivity (0.70 ± 0.117), F1-score (0.689 ± 0.124), precision (0.717 ± 0.128), accuracy (0.70 ± 0.117, p-value = 0.02), and ROC (0.686 ± 0.122, p-value = 0.06). These results suggest that ECG signals contain relevant information about the likelihood of an infant developing ASD. Future studies should consider the potential of information contained in ECG, and other indices of autonomic control, for the development of biomarkers of ASD in infancy.
Modeling is essential to better understand the generative mechanisms responsible for experimental observations gathered from complex systems. In this work, we are using such an approach to analyze the electrocardiogram (ECG). We present a systematic framework to decompose ECG signals into sums of overlapping lognormal components. We use reinforcement learning to train a deep neural network to estimate the modeling parameters from an ECG recorded in babies from 1 to 24 months of age. We demonstrate this model-driven approach by showing how the extracted parameters vary with age. From the 751,510 PQRST complexes modeled, 82.7% provided a signal-to-noise ratio that was sufficient for further analysis (>5 dB). After correction for multiple tests, 10 of the 24 modeling parameters exhibited statistical significance below the 0.01 threshold, with absolute Kendall rank correlation coefficients in the [0.27, 0.51] range. These results confirm that this model-driven approach can capture sensitive ECG parameters. Due to its physiological interpretability, this approach can provide a window into latent variables which are important for understanding the heart-beating process and its control by the autonomous nervous system.
In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD). The diagnosis of ASD requires behavioral observation and standardized testing completed by highly trained experts. Early intervention for ASD can begin as early as 1-2 years of age, but ASD diagnoses are not typically made until ages 2-5 years, thus delaying the start of intervention. There is an urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using physiological recordings has focused on brain-based biomarkers of ASD, this study investigated the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3-6-month-old infants. We recorded heart activity of infants at typical and elevated familial likelihood for ASD during naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted from them. Then we evaluated the effectiveness of multiple machine learning classifiers for the classification of ASD likelihood. Our findings support our hypothesis that infant ECG signals contain a significant amount of information about ASD familial likelihood. Among the various machine learning algorithms tested, XGBoost performed best according to sensitivity (0.76±0.12), f1-score (0.75±0.12), precision (0.79±0. 12), classification accuracy (0.77±0.12, p-value = 0.01) and AUC (0.76±0.12, p-value = 0.02). These results suggest that ECG signals contains relevant information about the likelihood of an infant to develop ASD. Future studies should consider the potential of information contained in ECG, and other indices of autonomic control, for the development of biomarkers of ASD in infancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.