Mental health illness such as depression is a significant risk factor for suicide ideation, behaviors, and attempts. A report by Substance Abuse and Mental Health Services Administration (SAMHSA) shows that 80% of the patients suffering from Borderline Personality Disorder (BPD) have suicidal behavior, 5-10% of whom commit suicide. While multiple initiatives have been developed and implemented for suicide prevention, a key challenge has been the social stigma associated with mental disorders, which deters patients from seeking help or sharing their experiences directly with others including clinicians. This is particularly true for teenagers and younger adults where suicide is the second highest cause of death in the US. Prior research involving surveys and questionnaires (e.g. PHQ-9) for suicide risk prediction failed to provide a quantitative assessment of risk that informed timely clinical decision-making for intervention. Our interdisciplinary study concerns the use of Reddit as an unobtrusive data source for gleaning information about suicidal tendencies and other related mental health conditions afflicting depressed users. We provide details of our learning framework that incorporates domain-specific knowledge to predict the severity of suicide risk for an individual. Our approach involves developing a suicide risk severity lexicon using medical knowledge bases and suicide ontology to detect cues relevant to suicidal thoughts and actions. We also use language modeling, medical entity recognition and normalization and negation detection to create a dataset of 2181 redditors that have discussed or implied suicidal ideation, behavior, or attempt. Given the importance of clinical knowledge, our gold standard dataset of 500 redditors (out of 2181) was developed by four practicing psychiatrists following the guidelines outlined in This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.
Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories.
Terror attacks have been linked in part to online extremist content. Online conversations are cloaked in religious ambiguity, with deceptive intentions, often twisted from mainstream meaning to serve a malevolent ideology. Although tens of thousands of Islamist extremism supporters consume such content, they are a small fraction relative to peaceful Muslims. The efforts to contain the ever-evolving extremism on social media platforms have remained inadequate and mostly ineffective. Divergent extremist and mainstream contexts challenge machine interpretation, with a particular threat to the precision of classification algorithms. Radicalization is a subtle long-running persuasive process that occurs over time. Our context-aware computational approach to the analysis of extremist content on Twitter breaks down this persuasion process into building blocks that acknowledge inherent ambiguity and sparsity that likely challenge both manual and automated classification. Based on prior empirical and qualitative research in social sciences, particularly political science, we model this process using a combination of three contextual dimensions -- religion, ideology, and hate -- each elucidating a degree of radicalization and highlighting independent features to render them computationally accessible. We utilize domain-specific knowledge resources for each of these contextual dimensions such as Qur'an for religion, the books of extremist ideologues and preachers for political ideology and a social media hate speech corpus for hate. The significant sensitivity of the Islamist extremist ideology and its local and global security implications require reliable algorithms for modelling such communications on Twitter. Our study makes three contributions to reliable analysis: (i) Development of a computational approach rooted in the contextual dimensions of religion, ideology, and hate, which reflects strategies employed by online Islamist extremist groups, (ii) An in-depth analysis of relevant tweet datasets with respect to these dimensions to exclude likely mislabeled users, and (iii) A framework for understanding online radicalization as a process to assist counter-programming. Given the potentially significant social impact, we evaluate the performance of our algorithms to minimize mislabeling, where our context-aware approach outperforms a competitive baseline by 10.2% in precision, thereby enhancing the potential of such tools for use in human review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.