Mental health illness such as depression is a significant risk factor for suicide ideation, behaviors, and attempts. A report by Substance Abuse and Mental Health Services Administration (SAMHSA) shows that 80% of the patients suffering from Borderline Personality Disorder (BPD) have suicidal behavior, 5-10% of whom commit suicide. While multiple initiatives have been developed and implemented for suicide prevention, a key challenge has been the social stigma associated with mental disorders, which deters patients from seeking help or sharing their experiences directly with others including clinicians. This is particularly true for teenagers and younger adults where suicide is the second highest cause of death in the US. Prior research involving surveys and questionnaires (e.g. PHQ-9) for suicide risk prediction failed to provide a quantitative assessment of risk that informed timely clinical decision-making for intervention. Our interdisciplinary study concerns the use of Reddit as an unobtrusive data source for gleaning information about suicidal tendencies and other related mental health conditions afflicting depressed users. We provide details of our learning framework that incorporates domain-specific knowledge to predict the severity of suicide risk for an individual. Our approach involves developing a suicide risk severity lexicon using medical knowledge bases and suicide ontology to detect cues relevant to suicidal thoughts and actions. We also use language modeling, medical entity recognition and normalization and negation detection to create a dataset of 2181 redditors that have discussed or implied suicidal ideation, behavior, or attempt. Given the importance of clinical knowledge, our gold standard dataset of 500 redditors (out of 2181) was developed by four practicing psychiatrists following the guidelines outlined in This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.
Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories.
We partner with a leading European healthcare provider and design a mechanism to match patients with family doctors in primary care. We define the matchmaking process for several distinct use cases given different levels of available information about patients. Then, we adopt a hybrid recommender system to present each patient a list of family doctor recommendations. In particular, we model patient trust of family doctors using a large-scale dataset of consultation histories, while accounting for the temporal dynamics of their relationships. Our proposed approach shows higher predictive accuracy than both a heuristic baseline and a collaborative filtering approach, and the proposed trust measure further improves model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.