The class J design space is investigated with half wave current excitation for a solid‐state RF amplifier capable of delivering hundreds of watts. Unlike conventional class J designs, the present analysis aims to explore a continuous design space in order to operate a commercially available device, within its practical limits of drain voltage. This design analysis together with package effects and the inclusion of non‐linear capacitor is verified experimentally by fabricating a high‐power (550 W CW) high‐efficiency (62.8%) solid‐state amplifier operating at 505.8 MHz. This power was obtained by in‐phase combining two similar continuous class J stages, each one contributing half of the total power. For high‐power lateral diffused metal‐oxide semiconductor devices, the class J design space is found to be more realisable than popular modes of operation in view of the large non‐linear output capacitance of the device. The measured output power, efficiency, spurious response and large signal output reflection coefficients are satisfactory and as anticipated from the design analysis. Since the final application of this amplifier is for a solid‐state transmitter, a study of repeatability in terms of phase and amplitude imbalances was carried out by fabricating and evaluating multiple amplifiers, each one working with the proposed design principle.
A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.
Radio frequency (RF) and microwave amplifier research has been largely focused on solid-state technology in recent years. This paper presents design and performance characterization of a 50-kW modular solid-state amplifier, operating at 505.8 MHz. It includes architecture selection and design procedures based on circuit and EM simulations for its building blocks like solid-state amplifier modules, combiners, dividers, and directional couplers. Key performance objectives such as efficiency, return loss, and amplitude/phase imbalance are discussed for this amplifier for real-time operation. This amplifier is serving as the state-of-the-art RF source in Indus-2 synchrotron radiation source. Characterization on component level as well as system level of this amplifier serves useful data for RF designers working in communication and particle accelerator fields.
A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.