Gas induction using a liquid jet is an extensively studied phenomenon. Many studies have been published detailing various hydrodynamic and mass transport aspects of gas induction in ejectors. Conversely, multiple studies have been published detailing jet dynamics, jet break up, nozzle geometry, effects of turbulence etc. In the modelling of the jet ejector systems CFD framework is used as the flow of gas is coupled with the liquid flow and the flow parameters like volume fraction, pressure drop/profile and velocity profiles both local and average are highly interdependent. Hence, it becomes important to capture all the flow physics in the simulations in order to understand the hydrodynamics. In the previous models the effect of turbulent dispersion was not included which led to incorrect calculation of phase profile, and other related parametric values. In the present work, the turbulence effects and its impact on the jet dynamics and gas induction rate in an ejector have been studied. Capturing the correct phase as well as velocity profile is imperative for the extension of the model to mass transfer and reactions. Lastly, other hydrodynamic properties like pressure drop, phase hold up and pressure profile help better the design correlations for jet ejectors.
Gas–liquid–liquid–solid (GLLS) reaction systems are often encountered in manufacturing of fine and specialty chemicals. More often than not, such reaction systems involve multiple reactions, and selectivity toward the desired component always poses challenges. An adequate understanding of various parameters affecting GLLS reactor performance is essential to develop strategies for realizing desired selectivity. In this work, a comprehensive reaction engineering model for simulating four phase hydrogenation reactions has been developed. A generalized mixing cell based framework for a reaction system with four interacting phases (gas [G], aqueous [L], organic [L], and solid catalyst [S]) was developed. The model is written in a general way so as to specify one of the liquid phases as a continuous phase, and the other three phases are dispersed into it. In each cell, vapor space is included. The model includes the possibility of evaporation of solvent and internal condensation (in vapor space). The model can also be applied for a dead end (from a perspective of reacting gas) reactor. Model equations were solved using MATLAB. The equations and solution methodology were verified by comparing numerical solutions with available solutions of various limiting cases. A case of four phase hydrogenation of nitrobenzene to para amino phenol and aniline was considered to illustrate the application of the developed model. Key findings from the model were validated by comparing with laboratory scale experimental data. The model was then used to develop insights and guidelines for enhancing selectivity toward desired product. The developed model and presented results will be useful to develop general guidelines for design and optimization of GLLS reactors.
Jet loop reactors are used widely for conducting gas liquid reactions because of the high mass transfer achieved in the gas-liquid ejector. Studies have shown that the mass transfer has a very strong correlation to the amount of gas induced in the ejector, and hence it is important to understand gas induction to enhance the performance of any gas-liquid nozzle. In this work, we used a single phase CFD model of the ejector with one adjustable parameter for estimating gas induction rates. After establishing that the model adequately describes the experimental data, the model was used for a quick evaluation of ejector geometries. Influence of key geometric parameters of gas-liquid ejectors like nozzle diameter, mixing tube length, distance between the nozzle outlet and mixing tube, suction chamber geometry and diffuser angle was investigated. It was found that dependence of gas induction on geometric parameters like distance between nozzle-mixing tube, suction chamber geometry, diffuser angle was either weak or had a clear maxima at or beyond a certain value of the geometric parameter. Other parameters like mixing tube length and nozzle diameter have a more complex impact on gas induction. The presented approach and results will be useful for quantifying influence of nozzle designs on gas induction rate in jet loop reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.