Significance
Hsp60/10 chaperonins are critical for cellular proteostasis in all kingdoms of life. In this study, we present that Hsp60/10 across different species have differences in the cavity properties and correlatively in their capability to remove entropic traps in folding pathways of GroEL/ES substrates; this is affected majorly by differences in the negative-charge density inside the chaperonin cavity. This dissimilarity leads to a remarkable difference between Hsp60/10 homologs in buffering mutational variations. However, most of them can remove nonnative contacts during folding of their substrates and alter the way the polypeptide chain undergoes hydrophobic collapse. We show that these homologs may have evolved specific modes of folding assistance by modulating cavity properties according to the requirements of their substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.