Streptococcus pneumoniae, one of the major human respiratory pathogens, uses its repertoire of surface proteins to adhere to the epithelium of the nasopharynx and lungs leading to colonization. PfbA is a conserved surface protein of S. pneumoniae and helps the bacterium to colonize the host by recognizing the extracellular matrix (ECM) molecule fibronectin, as well as blood proteins like plasminogen and human serum albumin. The crystal structure of rPfbA revealed it to possess a beta-helical region similar to those of carbohydrate-active enzymes as well as a C-terminal segment that resembles the fibronectin-binding regions of fibronectin-binding proteins. To get more insight into the putative carbohydrate-binding property of PfbA and its binding to various host molecules, we generated three different constructs of PfbA and characterized them by ELISA, isothermal titration calorimetry and bio-layer interferometry experiments. Importantly, the isothermal titration calorimetry experiments revealed that PfbA binds to different saccharides. Further, ELISA and bio-layer interferometry experiments identified that (a) apart from fibronectin and plasminogen, the beta helix of PfbA also binds to other ECM molecules (b) lysines are not responsible for PfbA's binding to plasminogen, (c) in comparison with native fibrinogen, deglycosylated-fibrinogen exhibits reduced binding affinity towards PfbA implying the importance of sugar molecule-PfbA interaction and (d) the C-terminal region of PfbA binds exclusively to the N-terminal F1 modules of fibronectin. Thus, the results of this study show PfbA to be a versatile multidomain and multiligand-binding protein employing different binding mechanisms. These results could be useful for structure-based designing of inhibitors against PfbA.
High Temperature Requirement A (HtrA) was identified as a secreted virulence factor in many pathogenic bacteria, including Listeria monocytogenes. Recently, it was discovered that Helicobacter pylori and Campylobacter jejuni HtrAs can directly cleave the human cell-adhesion molecule E-cadherin, which facilitates bacterial transmigration. HtrAs also interact with extracellular matrix (ECM) molecules. However, only a limited number of studies have been carried out in this regard. In the present study, the protease and ECM binding properties of L. monocytogenes HtrA (LmHtrA) were studied using native rLmHtrA, catalytically inactive rLmHtrA(S343A) and rLmHtrA lacking the PDZ domain (∆PDZ) to gain more insights into HtrA–ECM molecule interaction. The results show that (1) native rLmHtrA cleaves fibrinogen, fibronectin, plasminogen and casein in a time and temperature dependent manner, (2) interaction of rLmHtrA with various host proteins was found in the micromolar to nanomolar range, (3) in the absence of PDZ domain, rLmHtrA exhibits no drastic change in binding affinity toward the host molecules when compared with native rLmHtrA and (4) the PDZ domain plays an important role in the substrate cleavage as rLmHtrA1-394∆PDZ cleaves the substrates only under certain conditions. The proteolysis of various ECM molecules by rLmHtrA possibly highlights the role of HtrA in L. monocytogenes pathogenesis involving ECM degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.