The purpose of this study is to investigate the feasibility for quantitative measurement of singlet oxygen ((1)O(2)) generation by using a newly developed (1)O(2)-specific fluorescence probe Singlet Oxygen Sensor Green reagent (SOSG). (1)O(2) generation from photoirradiation of a model photosensitizer Rose Bengal (RB), in initially air-statured phosphate buffered saline (PBS) was indirectly monitored with SOSG. In the presence of (1)O(2), SOSG can react with (1)O(2) to produce SOSG endoperoxides (SOSG-EP) that emit strong green fluorescence with the maximum at 531 nm. The green fluorescence of SOSG-EP is mainly dependent on the initial concentrations of RB and SOSG, and the photoirradiation time for (1)O(2) generation. Furthermore, kinetic analysis of the RB-sensitized photooxidation of SOSG is performed that, for the first time, allows quantitative measurement of (1)O(2) generation directly from the determination of reaction rate. In addition, the obtained (1)O(2) quantum yield of porphyrin-based photosensitizer hematoporphyrin monomethyl ether (HMME) in PBS by using SOSG is in good agreement with the value that independently determined by using direct measurement of (1)O(2) luminescence. The results of this study clearly demonstrate that the quantitative measurement of (1)O(2) generation using SOSG can be achieved by determining the reaction rate with an appropriate measurement protocol.
A series of bis(arylidene)cycloalkanone photosensitizers modified by polyethylene glycol (PEG) have been studied for two-photon excited photodynamic therapy (2PE-PDT). As compared with their prototype compounds, these PEGylated photosensitizers show enhanced water solubilities while their photophysical and photochemical properties, including linear absorption, two-photon absorption, fluorescence, and singlet oxygen quantum yield, remain unaltered. In vitro behaviors (cellular uptake, subcellular localization, photocytotoxicity in both PDT and 2PE-PDT) of these photosensitizers reveal that an optimized lipid-water partition coefficient can be obtained by adjusting the length and position of the PEG chains. Among them, the photosensitizer modified asymmetrically by two tetraethylene glycol chains presents the best performance as a 2PE-PDT candidate. Selective blood-vessel closure and obvious therapeutic effect in inhibiting the growth of tumors are confirmed by in vivo 2PE-PDT after intravenous injection of this photosensitiezer. The survival periods of treated tumor-bearing mice are significantly prolonged. This study demonstrates the feasibility of using a simple molecule to construct a potential candidate for 2PE-PDT.
A serial of late transition metal complexes, which bearing Benzocyclohexane-ketoarylimine ligand and named as Mt(benzocyclohexane-ketoarylimino) 2 {Mt(bchkai) 2 : Mt¼Ni or Pd; bchkai¼C 10 H 8 (O)CN(Ar)CH 3 ; Ar¼naphthyl or fluoryl}, have been synthesized and characterized. The molecular structures of the ligands and nickel complex have been confirmed by Xray single-crystal analyses. The nickel complexes exhibited very high activity up to 2.7 Â 10 5 g polymer /mol Ni Áh and palladium complexes showed high activity up to 2.3 Â 10 5 g polymer / mol Pd Áh for norbornene (NB) homo-polymerization with tris (pentafluorophenyl)borane as cocatalyst. The four complexes were effective for copolymerization of NB and 5-norbornene-2carboxylic acid methyl ester (NB-COOCH 3 ) in relatively high activities (0.1-2.4 Â 10 5 g polymer /mol Mt Áh) and produced the addition-type copolymers with relatively high molecular weights (0.5 Â 10 5 -1.2 Â 10 5 g/mol) as well as narrow molecular weight distributions (PDI < 2 for all polymers). Influences of the metals and comonomer feed content on the polymerization activity as well as on the incorporation rates (20.9-42.6%) were investigated. The achieved NB/NB-COOCH 3 copolymers were confirmed to be noncrystalline, exhibited good thermal stability (T d > 400 C) and showed good solubility in common organic solvents. V C 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 50: [4695][4696][4697][4698][4699][4700][4701][4702][4703][4704] 2012
Background: Cervical cancer is the fourth most common cancer in women. Early detection and diagnosis play an important role in secondary prevention of cervical cancer. This study aims to provide more information to develop an effective strategy for the prevention and control of cervical cancer in northern China. Methods: A retrospective single-centre descriptive cross-sectional study was conducted in Chinese PLA General Hospital located in Beijing, covering the period from January 2009 to June 2019. The patients who underwent a polymerase chain reaction (PCR)-based HPV genotyping test and cervical pathological diagnosis were included. Furthermore, we limited the interval between the two examination within 180 days for the purpose of making sure their correlation to analyse their relationship. Moreover, the relationship between different cervical lesions and age as well as single/multiple HPV infection was assessed. Results: A total of 3134 patients were eligible in this study after HPV genotyping test and pathological diagnosis. Most of the patients (95%) were from northern China. Among the patients, 1745(55.68%) had high-grade squamous intraepithelial neoplasia (HSIL), 1354 (43.20%) had low-grade squamous intraepithelial neoplasia (LSIL) and 35 (1.12%) were Normal. The mean age was 42.06 ± 10.82(range, 17-79 years). The women aged 35-49 years accounted for the highest incidence rate. The top five most commonly identified HPV genotypes in each lesion class were as follows:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.