In this study, the effect of adding nano-silica (NS) particles on the properties of concrete containing coal fly ash were explored, including the mechanical properties, impact resistance, chloride penetration resistance, and freezing–thawing resistance. The NS particles were added into the concrete at 1%, 2%, 3%, 4%, and 5% of the binder weight. The behavior under an impact load was measured using a drop weight impact method, and the number of blows and impact energy difference was used to assess the impact resistance of the specimens. The durability of the concrete includes its chloride penetration and freezing–thawing resistance; these were calculated based on the chloride diffusion coefficient and relative dynamic elastic modulus (RDEM) of the samples after the freezing–thawing cycles, respectively. The experimental results showed that the addition of NS can considerably improve the mechanical properties of concrete, along with its freezing–thawing resistance and chloride penetration resistance. When NS particles were added at different replacement levels, the compressive, flexural, and splitting tensile strengths of the specimens were increased by 15.5%, 27.3%, and 19%, respectively, as compared with a control concrete. The addition of NS enhanced the impact resistance of the concrete, although the brittleness characteristics of the concrete did not change. When the content of the NS particles was 2%, the number of first crack impacts reached a maximum of 37, 23.3% higher compared with the control concrete. Simultaneously, the chloride penetration resistance and freezing–thawing resistance of the samples increased dramatically. The optimal level of cement replacement by NS in concrete for achieving the best impact resistance and durability was 2–3 wt%. It was found that when the percentage of the NS in the cement paste was excessively high, the improvement from adding NS to the properties of the concrete were reduced, and could even lead to negative impacts on the impact resistance and durability of the concrete.
In this study, the mechanical behaviors of nano-SiO2 reinforced geopolymer concrete (NS-GPC) under the coupling effect of a wet–thermal and chloride salt environment were investigated through a series of basic experiments, and a simulation on the coupling effect of a wet–thermal and chloride salt environment and SEM test were also included. During the experiments for the coupling effect of the wet–thermal and chloride salt environment, an environment simulation test chamber was utilized to simulate the wet–thermal and chloride salt environment, in which the parameters of relative humidity, temperature, mass fraction of NaCl solution and action time were set as 100%, 45 °C, 5% and 60 d, respectively. The content of nano-SiO2 (NS) particles added in geopolymer concrete (GPC) were 0, 0.5%, 1.0%, 1.5% and 2.0%. The result indicated that the mechanical properties of NS reinforced GPC decreased under the coupling effect of the wet–thermal and chloride salt environment compared to the control group in the natural environment. When the NS content was 1.5%, the cube and splitting tensile strength, elastic modulus and impact toughness of GPC under the coupling environment of wet–thermal and chloride salt were decreased by 9.7%, 9.8%, 19.2% and 44.4%, respectively, relative to that of the GPC under the natural environment. The addition of NS improved the mechanical properties of GPC under the coupling effect of the wet–thermal and chloride salt environment. Compared to the control group without NS, the maximum increment in cube compressive strength, splitting tensile strength and elastic modulus of NS–GPC under the coupling effect of the wet–thermal and chloride salt environment due to the incorporation of NS reached 25.8%, 9.6% and 17.2%, respectively. Specifically, 1.5% content of NS increased the impact toughness, impact numbers of initial crack and the ultimate failure of GPC by 122.3%, 109% and 109.5%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.