Glass fiber-reinforced polymers (GFRPs) have received increasing attention in recent years due to their overall performance of light weight, low cost and corrosion resistance, and they are increasingly used as reinforcement in concrete structures. However, GFRP material has low elastic modulus and linear elastic properties compared with steel bars, which introduces different bonding characteristics between bars and concrete. Therefore, a reliable monitoring method is urgently needed to detect the bond slip in GFRP-reinforced concrete structures. In this paper, a piezoceramic-based active sensing approach is proposed and developed to find the debonding between a GFRP bar and the concrete structure. In the proposed method, we utilize PZT (lead zirconate titanate) as two transducers. One acts as an actuator which is buried in the concrete structure, and the other acts as a sensor which is attached to the GFRP bar by taking advantage of machinability of the GRRP material. Both transducers are strategically placed to face each other across from the interface between the GFRP bar and the concrete. The actuator provokes a stress wave that travels through the interface. Meanwhile, the PZT patch that is attached to the GFRP bar is used to detect the propagating stress wave. The bonding condition determines how difficult it is for the stress wave traveling through the interface. The occurrence of a bond slip leads to cracks between the bar and the concrete, which dramatically reduces the energy carried by the stress wave through the interface. In this research, two specimens equipped with the PZT transducers are fabricated, and pull-out tests are conducted. To analyze the active sensing data, we use wavelet packet analysis to compute the energy transferred to the sensing PZT patch throughout the process of debonding. Experimental results illustrate that the proposed method can accurately capture the bond slip between the GFRP bar and the concrete.
Osteosarcoma is the most common primary malignant bone tumor, and the frequent acquisition of chemoresistance is often an obstacle to achieving favorable outcomes during chemotherapy. Recently, Krüppel‐like factor 4 (KLF4) has been shown to be associated with chemotherapy resistance in a few tumors; however, the involvement of KLF4 in chemotherapy resistance in osteosarcoma cells remains unknown. In this study, quantitative real‐time PCR and western blot analysis revealed that KLF4 expression was significantly increased in response to cisplatin, methotrexate and doxorubicin treatment in osteosarcoma cells, and knockdown of KLF4 increased sensitivity to these anticancer drugs by decreasing cellular clonogenic ability and increasing apoptosis. Moreover, our data suggest that KLF4‐regulated drug resistance might, at least partially, positively regulate high‐mobility group box 1 (HMGB1), which was found to be a significant contributor to chemoresistance in osteosarcoma cells in our previous study. In summary, this study highlights the significance of KLF4/HMGB1 interaction in regulating chemotherapy resistance, and suggests that targeting KLF4/high‐mobility group box 1 may be a therapeutic strategy for osteosarcoma chemotherapy.
The deterioration of soil-cement in a saline environment leads to a reduction in strength and an increase in permeability. Effective methods of determining the deteriorated layer permeability coefficient of soil-cement are currently lacking. A laboratory test method for measuring the permeability coefficient of the deteriorated layer was proposed using the modified permeability coefficient testing apparatus. According to the proposed method, the permeability coefficient of the deteriorated layer could be obtained after testing the permeability coefficient of the soil-cement specimen in acuring room and testing the equivalent permeability coefficient and deterioration depth of the soil-cement specimen in a deteriorated environment. Using the marine dredger fill from Jiaozhou Bay as a case study, the deteriorated layer permeability coefficients of soil-cements with different cement contents were tested. It turned out that the permeability of the deteriorated layer increases with age. At the beginning of the curing age, higher cement content led to a smaller permeability coefficient of the deteriorated layer of soil-cement. As the curing age increased, the deteriorated layer permeability coefficient of the soil-cement with higher cement content increased. The evolution of the permeability coefficient of a deteriorated layer with age can be formulated as the Logistic function. This study provides support for anti-permeability designs of soil-cement structures in saline environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.