The deterioration of soil-cement in a saline environment leads to a reduction in strength and an increase in permeability. Effective methods of determining the deteriorated layer permeability coefficient of soil-cement are currently lacking. A laboratory test method for measuring the permeability coefficient of the deteriorated layer was proposed using the modified permeability coefficient testing apparatus. According to the proposed method, the permeability coefficient of the deteriorated layer could be obtained after testing the permeability coefficient of the soil-cement specimen in acuring room and testing the equivalent permeability coefficient and deterioration depth of the soil-cement specimen in a deteriorated environment. Using the marine dredger fill from Jiaozhou Bay as a case study, the deteriorated layer permeability coefficients of soil-cements with different cement contents were tested. It turned out that the permeability of the deteriorated layer increases with age. At the beginning of the curing age, higher cement content led to a smaller permeability coefficient of the deteriorated layer of soil-cement. As the curing age increased, the deteriorated layer permeability coefficient of the soil-cement with higher cement content increased. The evolution of the permeability coefficient of a deteriorated layer with age can be formulated as the Logistic function. This study provides support for anti-permeability designs of soil-cement structures in saline environments.
The interaction between geosynthetics and soil is vital for the stability and the bearing capacity of geosynthetic-reinforced soil structures. This contact behavior between geosynthetics and granular soils has been extensively studied in the literature while there is scarcity of it related to geosynthetics and cohesive soils particularly with softening responses. This paper presents a strain-softening model of geobelt–clay interaction based on direct shear test results under two compaction degrees. A theoretical model for evaluating the pullout behavior of a geobelt is proposed by employing the strain-softening model verified by direct shear tests and a hyperbolic model capturing the stress–strain curves of a geobelt calibrated by uniaxial tensile tests. The proposed model is numerically solved and validated by pullout tests. A kind of sensor-enabled geobelt (SEGB) was adopted in all the aforementioned tests. Both test and numerical results show an overall softening trend in terms of front pull-out force versus displacement. Generally, the model proposed can give reasonably good agreement between calculations and test data during the whole pull-out range. Also, the strain distributions measured by SEGBs demonstrate the working process during the pullout tests, which makes SEGBs a potentially new choice for the strain measurements of in-soil geobelts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.