In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial-boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity.2010 Mathematics Subject Classification. 35B07, 35B20, 35D30; 76J20, 76L99, 76N10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.