As a continuation of [43], the paper aims to justify the high Reynolds numbers limit for the MHD system with Prandtl boundary layer expansion when no-slip boundary condition is imposed on velocity field and perfect conducting boundary condition on magnetic field. Under the assumption that the viscosity and resistivity coefficients are of the same order and the initial tangential magnetic field on the boundary is not degenerate, we justify the validity of the Prandtl boundary layer expansion and give a L 8 estimate on the error by multi-scale analysis.(1. 4)2000 Mathematics Subject Classification. 76N20, 35A07, 35G31, 35M33.
The dynamics of gaseous stars is often described by magnetic fields coupled to self-gravitation and radiation effects. In this paper we consider an initial-boundary value problem for nonlinear planar magnetohydrodynamics (MHD) in the case that the effect of self-gravitation as well as the influence of radiation on the dynamics at high temperature regimes are taken into account. Based on the fundamental local existence results and global-in-time a priori estimates, we establish the global existence of a unique classical solution with large initial data to the initial-boundary value problem under quite general assumptions on the heat conductivity.
Abstract. As is well-known that the general radiation hydrodynamics models include two mainly coupled parts: one is macroscopic fluid part, which is governed by the compressible Navier-Stokes-Fourier equations; another is radiation field part, which is described by the transport equation of photons. Under the two physical approximations: "gray" approximation and P1 approximation, one can derive the so-called Navier-Stokes-Fourier-P1 approximation radiation hydrodynamics model from the general one. In this paper we study the non-relativistic limit problem for the Navier-Stokes-Fourier-P1 approximation model due to the fact that the speed of light is much larger than the speed of the macroscopic fluid. Our results give a rigorous derivation of the widely used macroscopic model in radiation hydrodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.